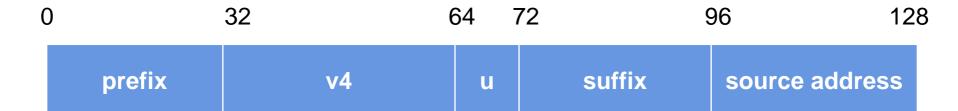


draft-ietf-softwire-mesh-multicast-01

Mingwei Xu, Yong Cui, Shu Yang, Jianping Wu Tsinghua University Chris Metz, Greg Shephard Cisco

> IETF 82 Meeting, Taipei November 2011


Scenarios of Interest I-IP E-IP downstream **AFBR** upstream. S or RP **AFBR** downstream **AFBR** receivers (*,G) or (S,G) (S',G') (*,G) or (S,G)

To simplify the process, stateless one-to-one source address and group address mapping is applied

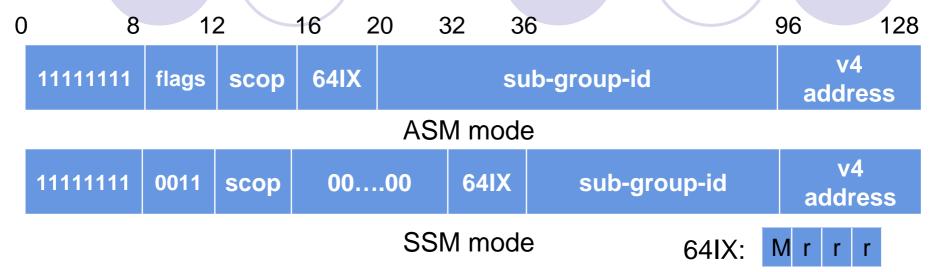
Four Detailed Scenarios

- E-IP supports SSM, I-IP supports SSM
 - S is embedded in S'
 - S' leads PIM messages to the upstream AFBR
- E-IP supports SSM, I-IP supports ASM
 - According to RFC4601, any network that supports ASM can also support SSM
 - To make it simple, I-IP works in SSM
- E-IP supports ASM, I-IP supports SSM
 - S or * is embedded in S'
 - S' leads PIM messages to the corresponding upstream AFBR
- E-IP supports ASM, I-IP supports ASM
 - To make it simple, I-IP works in SSM

Source Address Mapping(4over6)

- prefix: a "well-known" prefix or a ISP-defined prefix
 - An existing "well-known" prefix is 64:ff9b, which is defined in RFC6052
- v4: the IP address of one of upstream AFBR's E-IPv4 interfaces
- u: must be set to zero
- suffix: reserved for future extensions and should be set to zero
- source address: stores the original S or *

Source Address Mapping(6over4)


0 96 128

uPrefix64

source address

- uPrefix64: consists of a "well-known" prefix or a ISP-defined prefix
 - An existing "well-known" prefix is 64:ff9b, which is defined in RFC6052
- source address: the mapped I-IPv4 address of S or RP
- Note: E-IPv6 address of S and RP must follow this format

Group Address Mapping

- Defined in draft-boucadair-behave-64-multicast-addressformat-03
 - scop & flag: Defined in [RFC4291].
 - 64IX: When "M-bit" is set to 1, it indicates that an multicast IPv4 address is embedded in the "v4 address" field. All the remaining bits MUST be set to 0.
 - sub-group-id: The default value is all zeros.
 - v4 address: include an IPv4 multicast address when the M-bit is set to 1

Distribution of AFBR Routing Information

4over6

- Every AFBR should advertise the /96 prefix of S' to the I-IPv6 core
- Every AFBR should advertise the IP address in the "v4" field of the /96 prefix to other AFBRs by MPBGP

6over4

- Every AFBR should advertise the I-IPv4 address in "v4" field to the I-IPv4 core
- Every AFBR should advertise the /96 uPrefix64 to other AFBRs by MPBGP

4over6 Procedure

- Control plane
 - Downstream AFBRs translate E-IPv4 PIM messages into I-IPv6 PIM messages
 - S (or *) -> S', G -> G'
 - OI-IP core routers transmit I-IPv6 PIM messages
 - Oupstream AFBRs translate I-IPv6 PIM messages back to E-IPv4 PIM messages
 - If IP address of RP is found in "v4" field of S': S'->*, else S'->S
 - G'->G
- Data plane
 - Upstream AFBRs encapsulate multicast data
 - ODownstream AFBRs decapsulate multicast data

6over4 Procedure

- Control plane
 - Downstream AFBRs translate E-IPv6 PIM messages into I-IPv4 PIM messages
 - S(or *)->S', G->G'
 - OI-IP core routers transmit I-IPv4 PIM messages
 - Oupstream AFBRs translate I-IPv4 PIM messages back to E-IPv6 PIM messages
 - If S' is the mapped I-IPv4 address of RP: S'-> *, else S'->S
 - G'->G
- Data plane
 - Upstream AFBRs encapsulate multicast data
 - ODownstream AFBRs decapsulate multicast data

Other Considerations

- Tunnel technology
 - There may not exist one tunnel technique that all AFBRs support
 - Solution: Divide AFBRs into one or more classes
- Fragmentation
 - Fragmentation and reassembling of encapsulated packets must be supported by AFBRs

Updates from Version 00

 More detail description about the distribution of AFBR routing information

Discussion about tunnel technology and fragmentation

Future Work

- More details of ASM
 - The mapping between (*,G) and (S',G') is a little bit complex, which will be discussed in detail

More feedbacks are welcome