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Background of RTRIib

General objective:
* Implement RPKI-RTR client protocol in C

Timeline so far:
 Firstidea announced @ IETF80
* Implementation details @ IETF81

* Beta version released 1st September 2011
— No failover between RTR-Servers supported



Architectural Design

* Layered architecture to support flexibility

Caption:
D RTR connection manager
D RTR sockets

DTransport sockets
D Prefix validate table
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Next release: Version 0.2

Includes many bug fixes

— Thanks also to the interop tests with
rcynic and RPKI-Validator

Supports RTR-Server failover
— Implementation of RTR Connection Manager

Minor changes in the API
— Consistent naming of functions
— Convenience functions added

Extended debug messages



Preliminary Evaluation

Two perspectives of evaluation:
1.Current state of RPKI for ‘real’ BGP streams
2.Performance of the RTRIlib implementation

We will show (preliminary) results for both.



Setup

* Benchmark runs on commodity hardware
— AMD Athlon 64 X2 CPU 4200+ and 2 GB RAM

TCP-XML-Stream TCP-RTR




Results

One day measurement (November 4):

* 1336 prefixes received from RTR cache
— Based on four different trust anchors

e 2264 unique prefixes verified as valid
* |nvalid BGP Updates

— 20% have a correct origin but incorrect MaxLength

— 80% have an incorrect origin AS

* There exists a ROA Origin that is 1 hop away from the
announced origin AS in 90% of the cases.

— Similar order of magnitude for 5 day measurement



CPU Load — Nov. 4
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Scaling Behavior of RTRIib: CPU Load

* Added artificial prefixes to PFX Validate Table: 2,093,971

Same performance as for 1336 prefixes
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% 60000
0
(O]
= 40000 I -
o
[a
© 20000
©
T
3 0
015
°
v 0.1 | -
(@)
©
(7p]
-2  0.05
-]
Q.
Q
0
0 200 400 600 800 1000 1200 1400

Minute

10



CPU Load & Prefix Update Rate
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Required Memory [MB]

Memory Consumption
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Side note:
Including 1.000.000
entries from a file
takes ~4 seconds



Conclusion & Outlook

Manageable resource consumptions required

Most of the invalid prefixes due to
invalid origin AS

— More interesting: For most of them, ROA origin only
one hop away from announced origin -> Any ideas??

Release date for version 0.2: End of this week

— For test purposes, we will provide an open RTR-Server
instance

Project website: http://rpki.realmv6.org/

— If interest, we can add continuously updated BGP
validation statistics



