A RPKI RTR Client C Lib (RTRIib) -
Implementation Update &
First, Preliminary Performance Results

Fabian Holler, Thomas C. Schmidt, and
Matthias Wahlisch

holler f@informatik.haw-hamburg.de

{t.schmidt, waehlisch}@ieee.org

ee

Hamburg University of Applied Sciences VERGS

Background of RTRIib

General objective:
* Implement RPKI-RTR client protocol in C

Timeline so far:
 Firstidea announced @ IETF80
* Implementation details @ IETF81

* Beta version released 1st September 2011
— No failover between RTR-Servers supported

Architectural Design

* Layered architecture to support flexibility

Caption:
D RTR connection manager
D RTR sockets

DTransport sockets
D Prefix validate table

ftr_socket pfx table

rtr socket

| rtr socket I

+send, recv, ... send, recv, ... send, recv, ...

pfx_table_{add, remove,
validate_origin}

tr ssh socket | I tr tcp socket I ‘ tr tcp mdS socket ‘

(future work)

Next release: Version 0.2

Includes many bug fixes

— Thanks also to the interop tests with
rcynic and RPKI-Validator

Supports RTR-Server failover
— Implementation of RTR Connection Manager

Minor changes in the API
— Consistent naming of functions
— Convenience functions added

Extended debug messages

Preliminary Evaluation

Two perspectives of evaluation:
1.Current state of RPKI for ‘real’ BGP streams
2.Performance of the RTRIlib implementation

We will show (preliminary) results for both.

Setup

* Benchmark runs on commodity hardware
— AMD Athlon 64 X2 CPU 4200+ and 2 GB RAM

TCP-XML-Stream TCP-RTR

Results

One day measurement (November 4):

* 1336 prefixes received from RTR cache
— Based on four different trust anchors

e 2264 unique prefixes verified as valid
* |nvalid BGP Updates

— 20% have a correct origin but incorrect MaxLength

— 80% have an incorrect origin AS

* There exists a ROA Origin that is 1 hop away from the
announced origin AS in 90% of the cases.

— Similar order of magnitude for 5 day measurement

CPU Load — Nov. 4

CPU Usage per Validation Operation

80000

60000

40000 -

20000

Validated Prefixes [#]

0.15 | | |

0.1

0.05

CPU-Usage [%]

0 200 400 600

1336 prefixes received from RTR Cache

800

Minute

1000 1200

1400

Validated Prefixes [#]

CPU-Usage [%]

CPU Load — Nov. 9-Nov. 14

CPU Usage per Validation Operation

0 1000 2000 3000 4000 5000 6000
Minute

Scaling Behavior of RTRIib: CPU Load

* Added artificial prefixes to PFX Validate Table: 2,093,971

Same performance as for 1336 prefixes
CPU Usage per Validation Operation

% 60000
0
(O]
= 40000 I -
o
[a
© 20000
©
T
3 0
015
°
v 0.1 | -
(@)
©
(7p]
-2 0.05
-]
Q.
Q
0
0 200 400 600 800 1000 1200 1400

Minute

10

CPU Load & Prefix Update Rate

5,0 T T ' T ' T T T T T T T T T T T
45] Entriesin PEX_VALIDATE_TABLE: i
—=— 100000 :
— 4 04 vy 500000 .
= 35- —e— 1000000
5 1 1050000 :
O 3,0- i
i_) -
2 2,5- J
s
O 210_ _
o .
S 1,54 i
- l u
o B -
5 10- .
0’5_ r\ i
0,0

o

1000 2000 3000 4000 5000 6000 7000 8000

Prefix Validations per Second [#]

Required Memory [MB]

Memory Consumption

160
140 -
120 -
100 -
80 -
50 -
401

20

1 —®— Measured

| ! | ! |

—e— Numerically (~ 78 Bytes per entry)

\

336.072 entries: ~ 25MB

| ' l ' ' ' '
500.000 1.000.000 1.500.000 2.000.000
Entries in PFX_VALIDATE_TABLE [#]

Side note:
Including 1.000.000
entries from a file
takes ~4 seconds

Conclusion & Outlook

Manageable resource consumptions required

Most of the invalid prefixes due to
invalid origin AS

— More interesting: For most of them, ROA origin only
one hop away from announced origin -> Any ideas??

Release date for version 0.2: End of this week

— For test purposes, we will provide an open RTR-Server
instance

Project website: http://rpki.realmv6.org/

— If interest, we can add continuously updated BGP
validation statistics

