RTP Usage for CLUE IETF 82 – 14 November 2011

Jonathan Lennox <u>jonathan@vidyo.com</u>
Allyn Romanow <u>allyn@cisco.com</u>

Paul Witty <u>pauwitty@cisco.com</u>

Source Multiplexing: Motivation

- A telepresence session has lots of sources
 - Dozens at a time
 - e.g. for a continuous presence screen
 - Out of a pool of hundreds possible
- Sessions have asymmetric numbers of sources
- So the usual SIP model (a single media source per session) doesn't scale, and is needlessly complex.

Source multiplexing

- Send all sources (of the same media type) over a single RTP session, single transport flow.
 - Protocol behavior is straightforward
 - NAT traversal is fast, port consumption is low.
 - SDP is small, and looks "normal" to middleboxes.
- This was always part of RFC 3550 (RTP), but not widely used until recently.

Source multiplexing: exceptions

- There may be cases where we still need to use multiple RTP sessions
 - Most obviously, if sources should have different QoS.
 - This doesn't preclude having those sessions themselves carry multiple sources!

Source multiplexing: complications

- Some things get complicated
 - One-source-per-session was a fairly pervasive assumption.
 - Even though RTP always supported source multiplex.
 - Details of RTCP behavior.
 - Backward compatibility.
- Not in scope for CLUE general IETF architecture.
- See:
 - draft-westerlund-avtcore-multiplexarchitecture-00
 - draft-lennox-rtcweb-rtp-media-type-mux-00
 - The AVTCORE WG, and probably other groups too.

CLUE-specific Complications

- When you receive a source, you need to know why you're receiving it.
 - Which requested capture it corresponds to.
- This can change dynamically
 - Source collision / restart.
 - Switched captures.
 - Source moving between switched captures.
 - Three camera to two screen: LC \rightarrow LR \rightarrow CR \rightarrow LR
- This is needed before stream decoding starts.
 - Many systems: which screen to display on → which decoder hardware to use.

Demultiplexing RTP Streams in Same Session

Case to Consider: Infinite Sources

How to Demultiplex

- SSRC
- MuxID
- Hybrid

SSRCs Pros

- Already in RTP packet
- Unique number

The issue with SSRC: 3 streams sent

2 of 3 streams stop

Timeline

SSRCs Challenges

- Timing requirements for codec when SSRC changes requirements for codec when SSRC changes

Where to put metadata

- Advantage reliable
- Disadvantage reliability can cause large delays, esp.
 when lots of conference participants. Switching latency
- RTCP, e.g., new SDES

to route media

Can use acks and retrans, but can cause high latency

Sending metadata

Multiplex ID Advantages

Tag media packet with

- Header extension
 - Water stagen-charles, time of when SSRC changes
 - Receiver can add useful info tocamumeDnain

Multiplex ID Cons

- Disadvantage high processing costs
 - Scoped only within one hop
 - Adding, modifying expensive due to SRTP auth
 - requires re-auth of whole packet, could limit throughput
 - Might need to re-auth due to SDP anyway

Sending Multiplex IDs

Hybrid Scheme, Pros and Cons

MuxID

madia (trupipalikats liber/GDR).

using only the SSRC

 Advantage - Mitigates high switching latency and high processing cost

Hybrid Challenges

Needs more investigation