
Saratoga: A Scalable File Transfer Protocol
draft-wood-tsvwg-saratoga-09

http://saratoga.sf.net/
Lloyd Wood

Centre for Communication Systems Research, University of Surrey
l.wood@surrey.ac.uk

Charles Smith
Commonwealth Scientific and Industrial Research Organisation (CSIRO)

charles.smith@csiro.au

Wesley M. Eddy
MTI Systems

wes@mti-systems.com

Will Ivancic
NASA Glenn Research Center
william.d.ivancic@nasa.gov

Chris Jackson
Surrey Satellite Technology Ltd (SSTL)

C.Jackson@sstl.co.uk

http://saratoga.sf.net/
mailto:L.Wood@surrey.ac.uk
mailto:charles.smith@csiro.au
mailto:wes@mti-systems.com
mailto:William.D.Ivancic@grc.nasa.gov
mailto:C.Jackson@sstl.co.uk

Private sensor networks

•Must deliver sensor data – very quickly.

•Want to use Internet technologies – cheap, reliable, robust.

•Want more speed than TCP can offer.

•Congestion is not a problem; private single-owner managed
network with scheduled traffic, single flow per link with no
competition. This is not the shared public Internet!

•Sensor capabilities are ever-increasing (side-effects of
Moore’s law). Need to scale for ever-growing data sizes.

•Support for streaming and simultaneous delivery to multiple
receivers is also useful.

•Saratoga protocol designed to meet these needs.

2

Saratoga in brief
• Saratoga is a high-speed, UDP-based, peer-to-peer reliable

transport protocol, providing error-free guaranteed delivery
of files, or streaming of data.

• Send data packets out as fast as you can. No specified
congestion control is required, since data is usually only
going one hop over a private link, or across high-speed,
low-congestion private networks.

• Some implementations have a rate-limiting option for
restricted downstream links where line rate may not match
downstream radio link.

• No specified timers means no forced timeouts, so Saratoga
can be used with links with very long propagation delays.

• Saratoga is an excellent choice for highly asymmetric
forward/back path capacities.

3

NASA Glenn uses Saratoga to test DTN and
Interplanetary Internet on UK-DMC, 2008.

Saratoga’s development
Surrey Satellite Technology Ltd

developed Saratoga for imagery download
from its Disaster Monitoring satellites, 2003.

CSIRO

Saratoga for radio astronomy
extremely high data rates

NASA Glenn Research Center
Saratoga for sensors on UAVs

Saratoga redesigned, specified to the
Internet Engineering Task Force, 2007.

Multiple Saratoga implementations
in progress with interoperability testing.

4

Research led to new users

• SSTL remote-sensing images grew to cross 4GiB file size,
needing >32-bit pointers.

• How to design a scalable file transfer protocol able to
handle any size file, without requiring separate incompatible
implementations for big files?

• Solved this problem with 16/32/64/128-bit pointers and
advertising capabilities.

• 64-bit pointers support files up to 16 exabytes in size.

• 128-bit pointers can support files up to 256 exa-exabytes.

• Support for scalability and streaming introduced new users:
high-speed networking for radio astronomy in Very
Long Baseline Interferometers.

not needed - yet!

5

Saratoga operation
Simple sliding window with selective acknowledgments.

● The receiver requests the sender retransmit frames that have not
been properly received by sending a STATUS with the list of
HOLESTOFILL (a SNACK).

● The receive window only advances when offsets are contiguous.
The left edge of the transmit window does not advance until the
holes have been acknowledged by a HOLESTOFILL frame with
an advanced offset.

● The UDP checksum is used per packet to cover both the header
and payload. It is consistent, but not strong (one’s complement),
and does not provide end-to-end guarantees for payloads sent
using multiple packets.

● An optional end-to-end checksum over an entire file being
transferred, using one of CRC32/MD5/SHA-1, increases
confidence that a reliable copy has been made, and that
fragments have been reassembled correctly.

6

Features of Saratoga version 1
Major features

• Scalable to handle large files. 16-bit descriptors for efficiency with small
files <64K. 128-bit descriptors can cope with huge files. 32- and 64-bit
descriptors are most useful.

• Streaming of data is supported. This allows Saratoga to be used for
real-time delivery outside the file-based store-and-forward paradigm.

Minor features

• Supports link-local multicast to advertise presence, discover peers and
for delivery to multiple receivers simultaneously for e.g. file or code
image updates. (Will outperform TFTP trivial file transfer.)

• Optional UDP-Lite use for tolerating errors in payloads and minimizing
checksum computation overhead. The UDP-Lite checksum covers a
minimum of IP/UDP-Lite/Saratoga headers. The header content is
always checked so that the information about the data is error-free.

• Optional “DTN bundle” delivery as a “bundle convergence layer”.
Shown with tests from the UK-DMC satellite.

7

What Saratoga doesn't do
● There is no MTU discovery mechanism, so you have to know the

maximum packet size your network can transmit at. i.e. dictated by the
frame size. This is fine for your own private network, but would be
troublesome if used across the Internet.

● Saratoga does not include “slow-start” or congestion control.
That is considered poor, unsociable behavior on the Internet.
Saratoga just blasts away on a link with no regard for other flows –
which is the exact behavior that makes it desirable in private networks
and these environments!
• Simulations have shown that it is possible to implement congestion

control mechanisms in Saratoga if desired – see University of
Oklahoma paper at 2011 IEEE Aerospace Conference, describing
Sender-Based TCP-Friendly Rate Control.
• Saratoga’s timestamp option can be used to implement such

closed-loop mechanisms without datagram changes.
• Simple open-loop rate-limiting output to X Mbps can also allow

Saratoga to coexist with other traffic.

8

Saratoga version 1 implementations
C (Charles Smith under contract to Cisco Systems)

• Implementation licensed to CSIRO by Cisco.

• Built for speed (raw I/O).

Streaming to be implemented in FPGA. File transfer may also go to FPGA.

C (Surrey Satellite Technology Limited – SSTL)
• Implemented for high-speed image transfers from Low Earth Orbiting (LEO)

remote-sensing satellites over highly asymmetric links.

PERL (NASA Glenn Research Center)
• Also supports sequential file transfer and rate limiting.

C++ (NASA Glenn Research Center)
• Discovery, multiplexed file transfer, hooks for bundling and streaming and

rate-limiting to be implemented.

Wireshark Dissector (Charles Smith)
• Already available from Sourceforge.

We hope to make some of these implementations available to the public.
9

Our approach to the IETF
• We plan to take Saratoga version 1 through as an

individual submission for Experimental status.
• Rationale: Keep the current implementations progressing

and maintain interoperability between them.
• Keep detailed discussion on version 1 implementations

to the saratoga-discussion list. (To join that list, please
contact Lloyd Wood.)

● However, we would like TSVWG to begin reviewing this
version 1 specification to provide constructive comments
and criticism, as well as to gauge interest in adopting
work on version 2 as a Proposed Standard.

● Comments or suggestions?

10

Saratoga transactions

GET Get a named file from the peer

GETDIR Get a directory listing of files from the peer

PUT Put a named file or stream data to the peer

DELETE Delete a named file from the peer

11

Saratoga frame types
BEACON Sent periodically. Describes the Saratoga peer:

Identity (e.g. EID)

capability/desire to send/receive packets.

max. file descriptor handled: 16/32/64/128-bit.

REQUEST Asks for a file initiating ‘get’ transaction
get file
get directory listing
delete a file.

METADATA Sent at start of transaction. Initiates a ‘put’ transaction.
Describes the file, bundle or stream:
set identity for transaction
file name/details, including size.
set descriptor size offsets to be used for this transaction
(16/32/64/128-bit pointer sizes.)

DATA Actual Data.
Uses descriptor of chosen size to indicate offset for data
segment in the file/bundle or stream.
May request an ‘ack’ (send me a holestofill).

STATUS Missing Data Offsets / Error & Status Messages
Selective negative ack (‘snack’) HOLESTOFILL data.
Set left window edge for successful transfer so far
List of offsets and lengths indicate missing ‘holes’ in data.

12

Transaction GET or GETDIR

Receiver Sender
REQUEST

METADATA

DATA 1

DATA 2

DATA 3

DATA 4

STATUS
optional

DATA 3frame lost

DATA 5

STATUS I need 3 again

STATUS All received OK
13

HOLESTOFILL

Transaction “blind direct” PUT
Receiver Sender

METADATA

DATA 1

DATA 2

DATA 3

DATA 5

DATA 3frame lost

DATA 4
STATUS I need 3 again

STATUS All received OK

14

HOLESTOFILL

