Overlay Transport Virtualization (OTV)

Dino Farinacci Hasmit Grover Victor Moreno Dhananjaya Rao

Introduction

- OTV is a L2/L3 Virtualization Solution for Enterprise environments
- Transparent L2 extension for enterprise sites
- L2 and/or L3 connectivity for site devices
- Multi-site multi-point connectivity
- Core transport infrastructure agnostic
- Extremely simple provisioning and management

Overview

- MAC Routing
 - Uses control plane advertisements instead of data plane learning
 - Remote site MACs learnt via routing protocol
 - No unknown unicast flooding through core
- Inter-site data encapsulated in IP
 - Routed across core to destination site
 - No pre-built tunnels

Overview

- OTV forms an overlay network across core
- Dynamically discovers member Edge Devices
- EDs exchange L2 routing information
 - Unicast MACs of hosts and routers in site
 - Active Multicast Sources in site
 - Interested Multicast Groups
- OTV functionality only in edge devices
 - Transparent to core and site devices
- STP terminated at each site

Overlay Network

Note: Subnets span across all sites.

VLANs span across all sites.

Each site has its own Spanning Tree. No L2 flooding or learning on overlay.

Data Forwarding

- Unicast data sent to "next-hop" EDs
 - Packets load-balanced across core ECMPs
- Multicast uses Delivery Groups across core
 - Source ED encapsulates site data in a (DS,DG)
 - Core optimally replicates to interested EDs
- Broadcast data sent as IP multicast
 - All Edge Devices join this core multicast tree

Multi-homing

- OTV provides loop-free multi-homing
- Authoritative Edge Device (AED) per site
 - Edge Devices in the site elect AED
- Only AEDs forward traffic on overlay
 - Avoids loops and duplicates
- Site traffic load-balanced among EDs
 - Per-VLAN AED

MAC Mobility

- MAC moves supported by control plane
 - MAC advertised with default metric
 - When MAC moves, ED in new site advertises MAC with lower metric to indicate MAC move
 - When original advertiser sees this, withdraws its own advertisement
 - New site ED then readvertises with default metric

OTV UDP Encapsulation

1	2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5	6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-	+-+-+-+-+-+-+-+-+-+-+-+-+-+-
$ {\tt Version} {\tt IHL} {\tt Type \ of \ Service}$	•
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-	+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
•	Flags Fragment Offset
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-	+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
Time to Live Protocol = 17	•
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-	+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
Source-site OTV Edge Device IP Address +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+	
Destination-site OTV Edge	e Device (or multicast) Address
Source Port = xxxx +-+-+-+-+-+-+-+-+-+-+-+-+-+-	
	UDP Checksum = 0
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-	
R R R R I R R R Over	
+-+-+-+-+-+-+-+-+-+-+-+-+-+-	
	Reserved
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-	+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
Frame in Ethernet or 802.1Q Format	
riame in Ethernet or 802.10 roimat	

Overlay Routing Protocol

- Routing protocol for OTV control plane
 - Discovers overlay members
 - Forms adjacencies on overlay
 - Exchanges unicast and multicast routes
- IS-IS used as oUMRP
 - Overlay forms a logical LAN over the core
 - Edge Devices run IS-IS at L2 on overlay
 - Leverages Layer-2 IS-IS extensions

I-Ds

Overlay Transport Virtualization

http://www.ietf.org/id/draft-hasmit-otv-03

IS-IS Extensions to support OTV

http://tools.ietf.org/html/draft-drao-isis-otv-00

Comments?

Authors would like to solicit feedback and suggestions