
The GOE FEC schemes
<draft-roca-rmt-goe-fec-00>

&
UOD-RaptorQ vs. GOE

IETF81, 29th July 2011, Québec City

V. Roca, A. Roumy (INRIA)
B. Sayadi (ALU-BL)

 This presentation is a summary…
 For the details, see:

[RRSI’11]
A. Roumy, V. Roca, B. Sayadi, R. Imad, “Unequal Erasure
Protection (UEP) and Object Bundle Protection with a
Generalized Object Encoding Approach”, INRIA Research Report
7699, July 2011 (http://hal.inria.fr/inria-00612583/en).

2

Outline

1.  the two goals for UOD and GOE schemes

2.  close up on UOD
  why we think this is not a good practical solution

3.  Generalized Object Encoding (GOE)
  the idea
  a few key results

3

Goal 1: provide Unequal Erasure Protection
 with other FEC schemes, all symbols of an object

are equally protected…
 UEP is sometimes needed

 even with file transfers (e.g. file containing scalable video)

 can be achieved in 3 different ways
1.  thanks to UEP aware FEC codes

•  dedicated FEC codes

2.  thanks to UEP aware packetization
•  keep standard FEC codes

3.  thanks to UEP aware signaling
•  keep standard FEC codes

4

UOD

GOE

Goal 2: protect a bundle of small files
 imagine you have 100 files of 100 bytes each…

 sending (e.g.) twice each packet is not efficient…
•  neither in terms of protection
•  nor flexibility (code rate is one of {1/2, 1/3, 1/4...})

5

… O1 O2 O3 O4 O5 O6 O7 O8 O100

1 packet per object (small enough to fit in a single packet)

… p1 p2 p3 p4 p5 p6 p7 p8 p100

send each packet twice ⇒ code rate = ½

… and pray for one of the two packets of each object to be received!

Goal 2: bundle of small files… (cont’)
 can be solved in two different ways

1.  thanks to bundle aware packetization

2.  thanks to bundle aware signaling

  NB: forget upper-level solutions (e.g. submit a tar archive)
•  objects may be produced on the fly, they are not necessarily

files in a hierarchy of directories

6

UOD

GOE

Outline

1.  the two goals for UOD and GOE schemes

2.  close up on UOD
  why we think this is not a good practical solution

3.  Generalized Object Encoding (GOE)
  the idea
  a few key results

7

UOD (Universal Object Delivery using RaptorQ)
 UOD is a UEP-aware packetization technique
 inherits from PET [PET96] its packetization mechanism

 each packet is an aggregate of symbols coming from
 the various “objects”
 we’ll see what “object” means later on

 let’s look a bit more at the details…

[PET96]
A. Albanese, J. Blomer, J. Edmonds, M. Luby, M. Sudan, “Priority encoding
transmission”, IEEE Trans. on Information Theory, Vol. 42 Issue 6, Nov. 1996.

8

UOD sender example: part 1

9

Given:
-  2 objects of different priority
-  target packet size
-  target code rate for each object

Calculate (see [PET96]):
-  n, number of packets
-  number of symbols for each object
-  symbol size for each object

NB: due to rounding effects:
-  the actual packet size is ≤ target
-  the actual code rate of each object is
≥ target

HIGH PRIORITY
“object” O1

LOW PRIORITY

“object” O2

ex: segmented into 2 “large” symbols

ex: segmented into 7 “small” symbols

UOD sender: part 2, FEC + packet creation

10

LOW PRIORITY

“object” O2

3 repair
symbols

HIGH PRIORITY
“object” O1

8 repair symbols

symbol of O1 symb. of O2 packet 1

copy symbol
into packet

s1

s2

r1

r2

…

r8

s1

s2

…

s7

r1

r2

r3

symbol of O1 symb. of O2 packet n

… …

code rate = 0.2 code rate = 0.7

FEC Encoding

n = 10 encoding
symbols for each

class

UOD receiver example:

11

symbol of O1 symb. of O2 symb. O3 symb. O4 symbol of O5 received packet

Packet processing at a receiver

“object”
O1

“object”
O2

… “object”
O5

(repair symbols)

(repair symbols)

… copy into the
target object

copy into the
target object

ignore

FEC decoding if feasible

FEC decoding if feasible

missing…

missing…

recover O2

recover O5

How UOD addresses goals 1 and 2
 goal 1: UEP

 here “object” == “subset of a file of a given priority”
 assign different target code rates to each object

 goal 2: file bundle
 here “object” == “file”
 each packet contributes to each object decoding

•  since each packet contains a symbol of each encoding object

12

UOD analysis
 inherent complexity due to its packetization

 each incoming packet MUST be processed as long as there’s
at least one non decoded object

•  with GOE, a receiver does not look inside packets for
decoded/undesired objects

 extra memory copies to/from packets
•  otherwise memory consumption would be too high
•  no such burden with GOE

 with a bundle of 100 objects, you perform 100 FEC
encodings and 100 FEC decodings

•  GOE schemes need only 1

 understanding UOD is challenging
•  to the complexity of PET it adds the complexity of UOSI and

RaptorQ features (sub-symbols/blocks, Al alignment)
•  understanding GOE is a matter of 5mn 13

UOD analysis… (cont’)
 UOD is far too inflexible

 symbol size is determined by {D, object sizes, target code
rates, target packet size, Al}

•  e.g. with D=255 objects, 1024 byte packets, you have no
choice but using 4 byte long symbols!!!

•  with GOE, this size usually corresponds to the PMTU, but
other choices are possible too, up to the CDP

 a small symbol size has significant impacts on decoding
complexity

•  it increases the number of symbols in a block, and the size of
the linear system a receiver has to decode!

•  big impact on the Gaussian elimination scheme described in
Raptor/RaptorQ RFC!

•  with GOE, the number of symbols is kept minimum, as well
as the linear system size

14

UOD analysis… (cont’)
 NB: error in the I-D

•  saying the symbol size is determined by the CDP is wrong.
Itʼs determined by the UOD scheme, using a specific
algorithm that should be described, even if it is complex

15

UOD analysis… (cont’)
 certain situations are not well addressed

 UOD bundle example at IETF80 and add a small file
•  32 files of size 32 KB, and 1 file of size 10 bytes
•  target code rate ½ for all files, target packet size is 1 KB
•  it follows there are n = 2049 encoding packets

16

object
size

source
symbols

symbol size target
code rate

actual
code rate

target
pkt size

actual
pkt size

32 KB 1171 28 B (32 is
too large)

0.5

0.571
1024 B

900 B

10 byte 3 4 B 0.00146

protection far
too important

less protected sub-optimal
packet size

UOD analysis… (cont’)
 from a situation where all targets were perfectly achieved

•  see bundle example at IETF80
 …adding a single small file can have catastrophic

consequences
 reason

 Al=4 bytes is the minimum symbol size.
 If the object sizes differ significantly, UOD cannot fill each

packet while complying with all the targets
•  it would require a finer, bit-level, Al granularity

 to summarize

 UOD/PET is an excellent idea on the paper...
 …but I wouldn’t recommend its use for practical realizations

17

Outline

1.  the two goals for UOD and GOE schemes

2.  close up on UOD
  why we think this is not a good practical solution

3.  Generalized Object Encoding (GOE)
  the idea
  a few key results

18

Generalized Object Encoding (GOE)
 GOE is a pure signaling proposal
 no new FEC code …but dedicated GOE FEC schemes
 no specific packetization …1 symbol = 1 packet

 what GOE I-D does is:

 explain what happens to original objects

 explain how Generalized Objects (GO) are created

 explain additional signaling

and that’s all…

19

GOE in 3 slides 1/3

 use a No-Code FEC Scheme
 choose a symbol size valid for all objects
 manage TOI in sequence for all objects
 No-Code FEC encode each object
 send No-Code encoded symbols

 nothing new, FLUTE/FCAST signaling is as usual

20

•  explain what happens to original objects

•  explain how Generalized Objects (GO) are created

•  explain additional signaling

GOE in 3 slides… 2/3

 create “Generalized Objects” (GO) on top of it
 identify the 1st source symbol of a GO

•  use the {TOI, SBN, ESI} provided by No-Code FEC encoding
 identify the number of symbols of a GO

•  they possibly belong to different objects, itʼs not an issue

21

•  explain what happens to original objects

•  explain how Generalized Objects (GO) are created

•  explain additional signaling

Object 1 (TOI=1, SBN=0)

esi1 esi2 esi3 esi4 esi5 esi6

Object 2 (TOI=2, SBN=0)

esi1 esi2 esi3 esi4 esi5 esi6 esi7

(SBN=1)

esi1 esi2 esi3 esi4

Generalized Object 1
starts at {TOI=1, SBN=0, ESI=3}, length = 8 symbols

GOE in 3 slides… 3/3

 signaling aspects
 assign a new TOI for each GO

•  to be easily distinguished from original objects
 dedicated FEC OTI (carried in EXT_FTI or FLUTE FDT Inst.)

•  carry the GOE specific metadata
•  identifier for initial source symbol + number of symbols

 same FEC Payload ID as original FEC scheme, with
restrictions on valid ESI

•  …since only repair symbols are sent

22

•  explain what happens to original objects

•  explain how Generalized Objects (GO) are created

•  explain additional signaling

Comparison
 GOE is simple

 the “object” “generalized object” mapping is quite natural
•  … even if it requires some logic to implement it

 initialization is trivial unlike UOD/PET

 GOE is compatible with all FEC schemes
 GOE Reed-Solomon for GF(28) available
 GOE LDPC Staircase proposal to come...

 GOE is backward compatible
 a receiver that has no GOE-aware FEC scheme…

•  can take advantage of “No-Code source symbols”
•  silently drops all “GOE repair symbols” (different TOI and

LCT codepoint)

23

Comparison… (cont’)
 GOE is efficient [RRSI11]

 less predictable than UOD/PET
•  is it really an issue?

 same UEP protection as UOD/PET in general
•  no major difference, sometimes GOE performs the best,

sometimes itʼs the opposite
 less processing at a receiver than UOD/PET

•  no “deep packet processing” unlike UOD/PET

 these features are easily controlled by the sender
 GOE can be optimized for specific use-cases

•  e.g. to reduce peak memory requirements, decoding delay of
high priority GO, while smoothing processing load

•  trade-off to find between robustness in front of erasure bursts
and gains

24

Comparison… (cont’)
 example: from “uniform interleaving” to a “3-permutation”

 all details in [RRSI’11]
 compares PET/UOD versus GOE
 n-truncated negative binomial distribution model (PET+GOE)
 theoretical + simulation results for

•  decoding delay max. memory consumption
•  number successful decodings number packets processed

25

 0

 100

 200

 300

 400

 500

 600

 0 10 20 30 40 50 60 70

d
e

c
o
d

in
g
 d

e
la

y
 p

e
r

o
b
je

c
t
(#

 p
a
c
k
e

ts
)

channel loss probability (%)

GOE 3-permutation object 0
GOE 3-permutation object 1
GOE 3-permutation object 2
GOE 3-permutation object 3
GOE 3-permutation object 4

 0

 100

 200

 300

 400

 500

 600

 0 10 20 30 40 50 60 70

d
e

c
o
d

in
g
 d

e
la

y
 p

e
r

o
b
je

c
t
(#

 p
a
c
k
e

ts
)

channel loss probability (%)

GOE object 0
GOE object 1
GOE object 2
GOE object 3
GOE object 4

significant decoding delay gains

Next steps?
 we have use-cases that need GOE

 continue standardization within RMT? In TSVWG? As an
individual submission?

 our intent:
•  split current I-D into “GOE FEC Scheme Concept”
•  …and “Reed-Solomon for GF(28) GOE FEC Scheme” I-D
•  add an “LDPC-Staircase GOE FEC Scheme” I-D

 references
[RRSI’11]

A. Roumy, V. Roca, B. Sayadi, R. Imad, “Unequal Erasure Protection (UEP)
and Object Bundle Protection with a Generalized Object Encoding Approach”,
INRIA Research Report 7699, July 2011 (http://hal.inria.fr/inria-00612583/en).

[PET96]
A. Albanese, J. Blomer, J. Edmonds, M. Luby, M. Sudan, “Priority encoding
transmission”, IEEE Trans. on Information Theory, Vol. 42 Issue 6, Nov. 1996.

26

