In-Band Authentication Extension for Protocol Independent Multicast (PIM)

draft-bhatia-zhang-pim-auth-extension-00

Manav Bhatia manav.bhatia@alcatel-lucent.com Dacheng Zhang zhangdacheng@huawei.com

Problem Statement

- Existing PIM security mechanisms mandate to use
 IPsec to provide message authenticity and integrity.
 - No suitable key management mechanism is provided to support multicast.
 - Extremely difficult to use and configure as a result nobody uses it today.
 - When manual keying is used, the replay protection of IPsec does not work.
 - Replay attacks can seriously disturb the normal operations of PIM
 - For instance, when a PIM router received a hello message with a changed GenID and an re-initialized sequence number, it is difficult for the receiver to distinguish this message from a replay attack.

Related Work

- The issues raised by using IPsec to protect OSPFv3 have been discussed in both the KARP and OSPF WGs.
 - The analysis is proposed in draft-ietf-karp-ospf-analysis
 - An in-band security approach is proposed in *draft-ietf-ospf-auth-trailer-ospfv3*
- Applying similar principles in PIM
 - The analysis is done in draft-bhatia-karp-pim-gap-analysis

Solution

- Define an in-band security solution to replaces IPsec to provide message authenticity, integrity, and freshness.
 - A new type of PIM message is defined that encapsulates and secures other types of PIM messages.
 - Manual keying is assumed
 - The solution does not preclude the possibility of supporting automated keys in future.

Packet Format

```
Checksum
|PIM Ver| Type
           Reserved
Auth Data Len
      Key ID
       Cryptographic Sequence Number (High Order 32 Bits)
Cryptographic Sequence Number (Low Order 32 Bits)
Authentication Data (Variable)
 Type 1 | Reserved 1
+-+-+-+-+-+-+-+-+-+-+
                                      Protected
        Remainder part of the packet expected
                                       packet
                to be protected
```

Resistance on Replay Attacks:

- Protection against intra-connection replay attacks:
 - A monotonically increased sequence number is provided
 - The space of the sequence number should be big enough
- Protection against inter-connection replay attacks:
 - The base solution is subject to inter-connection replay attacks.
 - By using the approach proposed in draft-ietf-ospf-securityextension-manual-keying, this problem can be addressed
 - The first 32 bits of the sequence number is used to count the reboot times which is maintained in non-violated memory

Question?