MPLS-TP Use Cases and Design Considerations

draft-fang-mpls-tp-use-cases-and-design

Luyuan Fang lufang@cisco.com

July 27. 2011 IETF 81, Quebec City, Canada

Contributing co-authors

- Luyuan Fang
- Dan Frost
- Nabil Bitar
- Raymond Zhang
- Masahiro DAIKOKU
- Jianping Zhang
- Mach Chen
- Lei Wang
- Nurit Sprecher
- Henry Yu
- Curtis Villamizar

Cisco Cisco Verizon ALU KDDI CT Huawei Telenor NSN TW Telecom Infinera

Objectives

- Objectives:
 - Provide MPLS-TP use case studies
 - Discuss design considerations and options
 - Intent to serve as best practice guide
- Intended category: Informational
- Status:
 - Discussed in IETF 78, 79, 80
 - Recent input from Curtis on packet optical transport
 - Work in progress for new additions especially in design considerations

Overview

Use cases

- Metro Agg/Acc, Mobile backhaul, Packet Optical Transport
- In general, MPLS-TP provides the transport for multiservices, e.g. wireline/wireless, business VPNs/ residential broadband, whole sale/retail...
- Bring in latest real world deployment/planning examples which using IETF standards MPLS-TP solutions.

Design Considerations (1)

- Technologies selections
 - What is the role of MPLS-TP? De-confusion.
 - Operational reality often dictate the solution
 - Balance between today's reality and needs for future proof
- Operational Model selections
 - NMS provisioned
 - GMPLS control plane
 - Combination, interaction of both in some cases
- LSP related design options
 - Bidirectional co-routed vs. associated
 - Bidirectional vs. Unidirectional
 - BW reservation, QoS, nested LSPs

More on Design Considerations (2)

Protection

- 1:1, 1+1, 1:N (1 protects n working lsps)
- Linear/Ring/Shared mesh protection
- Recovery coordination among layers
- PW protection and LSP protection
- Support of multi-homing, multi-chassis redundancy
- Delay variation between working and protect LSPs
- OAM
 - Balance between protection coverage and efficiency/reduce complexity
 - Tuning BFD hello interval and hold off timer
 - Distance impact to AIS/RDI/LDI use of TP style fast reroute
 - Clocking and loss/delay measurement
 - Use of loopback and lock Instruct for test and maintenance
 - OAM and control plane relations

More on Design Considerations - Inter-connections

Agg./Access	Inter-connect	Core
MPLS-TP	- PW over LSP - VLAN	MPLS PW
MPLS-TP	- PW over LSP - MPLS-TE VLAN	MPLS-TE
IP/MPLS	- GMPLS-UNI - PW over LSP - VLAN	MPLS-TP (w/ GMPLS CP)
Metro Ethernet (VPLS or native E)	- VLAN - H-VPLS - GMPLS-UNI	MPLS-TP

- Interconnection models:
 - Overlay vs. Peering
 - LSP stitching vs. termination
 - PW switching vs. PW mesh

Design Considerations (3)

- Good general practice
 - Starts as simple as possible make it happen!
 - Stay on standards track
 - Keep flexibility for future enhancement

Next Steps

- Issue 04 draft soon
 - Fix the author list in the front page
 - Address all points listed
- More input/comments from WGs appreciated
- Asking for WG document adoption after revision