# Problem Statement for Operational IPv6/IPv4 Co-existence

Chongfeng Xie (xiechf@ctbri.com.cn)

Qiong Sun (sunqiong@ctbri.com.cn)

3/31/2011

#### **Current Situation**

- ISP: facing the biggest pressure of IPv4 address shortage
- ICP: lacking of enough motivation to migrate to IPv6
- Manufacture: wondering what to do next...



#### **Network Architecture**

performance requirement

AS Router would be suitable for centralized placement



#### **Communication Scenarios**

- IPv6 is a final way to solve address shortage; however, there is not much IPv6 content.
- IPv4/IPv6 will co-exist for long period.
- Two major scenarios: IPv4←→IPv4 for most current applications and IPv6←→IPv4 for P2P applications and future IPv6-only ones.

| DS-Lite    | A+P        | Stateless<br>NAT64 / dIVI | Stateful<br>NAT64 | NAT444<br>+IPv6 |
|------------|------------|---------------------------|-------------------|-----------------|
| IPv4←→IPv4 | IPv4←→IPv4 | IPv4←→IPv4                | IPv6→IPv4         | IPv4←→IPv4      |
| IPv6←→IPv6 | IPv6←→IPv6 | IPv6←→IPv4                | IPv6←→IPv6        | IPv6←→IPv6      |
|            |            | IPv6←→IPv6                |                   |                 |

## **End-to-End transparency and Scalability**

- It should be scalable, easy for new applications to deploy in operational network.
- CGN would bring much complexity to the core of Internet, which includes transport-layer port mapping and ALG.
  - which includes transport-layer port mapping and ALG.
- CGN would also bring a lot of cost for ISPs.

| DS-Lite     | A+P                      | Stateless<br>NAT64/dIVI  | Stateful<br>NAT64 | <b>N#IP46</b> 4<br>+IP∨6 |
|-------------|--------------------------|--------------------------|-------------------|--------------------------|
| CGN problem | Better<br>Core stateless | Better<br>Core stateless | CGN problem       | CGN problem              |

## **Addressing and Routing**

- Existing ISPs who adopt PPPoE/PPPoA need to allocate PD-prefix and WAN-interface address, and CPE would re-allocate IPv6 addresses to end systems.
- Address allocation system would setup the corresponding
- Existing ISPs who adopt PPPoE/PPPoA need to allocate PD-prefix and WAN-interface address, and CPE would re-allocate IPv6 addresses to end systems.
  - Address allocation system would setup the corresponding

| DS-Lite                                         | A+P                                                                                            | Stateless<br>NAT64/dIVI                                          | Stateful<br>NAT64       | NAT444+IPv6             |
|-------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------|-------------------------|
| Address of<br>the tunnel<br>end to be<br>passed | Changes to address allocation related to the address format, address allocation related to the | Some changes to address allocation related to the address format | No specific requirement | Private IPv4 addressing |

## Address usage and consumption

- IPv4/IPv6 transition solutions would need address
- IPv4/IPv6 transition solutions would need address sharing, including dynamic and static ones.
- Nowadays, most applications consume many concurrent sessions,
- With address multiplexing, IPv4 address shortage problem could already be largely released.

| DS-Lite         | A+P            | Stateless<br>Stateless | Stateful<br>Stateful | NAT444<br>NAT444 |
|-----------------|----------------|------------------------|----------------------|------------------|
| Dynamic sharing | Static sharing | Static sharing         | Dynamic sharing      | Dynamic sharing  |

#### User management and logging requirement

ISPs and ICPs have the requirements of lawful interception and surveillance.

- Session-based logging would bring a great burden to
- ISPs and ICPs have the requirements of lawful interception and surveillance.
- Session-based logging would bring a great burden to existing software-based logging system.

| DS-Lite            | A+P              | Stateless<br>NAT64/dIVI | Stateful<br>NAT64        | NAT444<br>+IPv6        |
|--------------------|------------------|-------------------------|--------------------------|------------------------|
|                    |                  |                         |                          |                        |
| 850e38sioomlybased | Movoiodlyg table | NPv6iodlyg table        | <b>SFexaSion</b> Nybased | <b>Deasistada</b> sed  |
| Add IPv6 feature   | Add IPv6 feature | Add IPv6 feature        | Add IPv6 feature         | Add dual stack feature |
| Logging:           | Logging:         | Logging:                | Logging:                 | Logging:               |
| Session-based      | No binding table | No binding table        | Session-based            | Session-based          |

#### **CPE** issue

- Most IPv6 transition solutions would need to take additiona modifications to CPE, apart from native IPv6 support.
  - And cost is extremely huge due to the large number of pes. Special customers could not fully control customer's CPEs.
- Most IPv6 transition solutions would need to take additional modifications to CPE, apart from native IPv6 support.
- ISPs sometimes could not fully control customer's CPEs.

| DS-Lite        | A+P                     | Stateless<br>NAT64/dIVI        | Stateful<br>NAT64 | NAT444+IPv6 |
|----------------|-------------------------|--------------------------------|-------------------|-------------|
| Tunneling+IPv6 | NAT+ Tunneling<br>+IPv6 | dIVI: NAT+<br>translation+IPv6 | IPv6-feature      | IPv6+NAT44  |

## **Summary**

- Existing solutions for IPv4 address sharing is existing solutions for IPv4 address sharing is
- operationally complex We need more scalable address sharing mechanism to reduce the state cost and we need more scalable address sharing complexity of core network
- There are alternatives that make life a lot easier operators
   There are alternatives that make life a lot easier for operators

### **Summary**

#### development

- Better scalability
  - distribution direction
  - mreintpister-subscribspotstiblentries in core network, and stitle bouldes in the proposition of the core network, and stitles bouldes in the core network.
  - SYETTE modification to existing addressing and routing
  - Define flexible addressing plan for different purpose

## Thank you