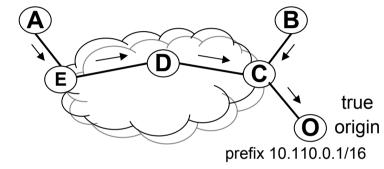
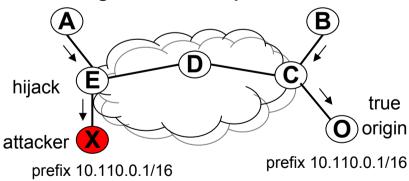
Secure Extension of BGP by Decoupling Path Propagation and Adoption


draft-zhang-idr-decoupling-01 draft-zhang-idr-decoupling-02

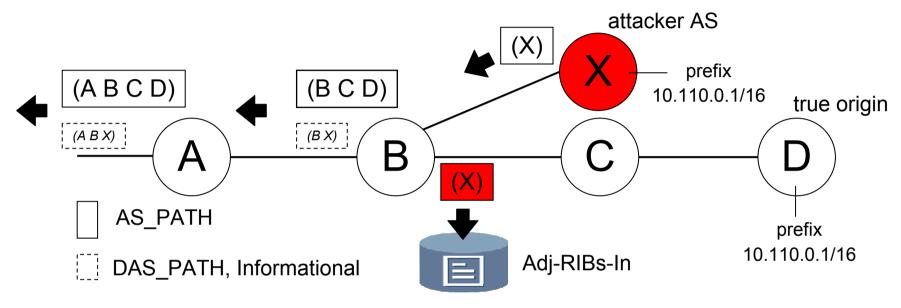
Mingui Zhang mingui@huawei.com


False Routing Announcements

Interrupt the Internet service

- Source
 - Malicious attack
 - Mis-configuration
- Attacker can do
 - Black holing
 - Interception

True origin announces prefix 10.110.0.1/16



False origin announces prefix 10.110.0.1/16 and hijacks A's route

Solutions

- Prevention
 - based on RPKI (used by SIDR), act before attacks
 - however, not widely deployed
- Detection
 - monitoring & reaction, act after attacks
- Mitigation
 - filtering on routers' own knowledge, act during attacks

DBGP-A New Mitigation Scheme

DBGP: Decoupling path propagation and adoption in BGP

- (B X) is suspected and propagated in DAS_PATH attribute.
 - A DAS_PATH will only used for informational purpose rather than real data delivery!
- If (B X) is actually legitimate, the propagation in fact enable parallel validation.
 - When B propagate it to A as legitimate path later, A MAY have already finished the validation (e.g., checked by operators) in advance and can accept it directly without suspicion.

Optional & Transit DAS_PATH

```
Attribute Type
                       (2 bytes)
Attribute Length
                      (1 or 2 bytes)
Attribute Value
                       (variable length)
Value
  Segment
                 Type
                unordered set of ASs a route in the
  DAS SET
                UPDATE message has traversed
                ordered set of ASs a route in the
   DAS SEQUENCE
                UPDATE message has traversed
```

Similar with AS PATH attribute

Comments

- Cooperate with prevention schemes
- Operational complexity
- Add multiple DAS_PATHs option
- Detection facilitation
- Maintain separate trust-info history database

1. Cooperate with Prevention

- If we have SIDR solutions deployed on BGP routers, there are no false routing announcements at all.
 - ISP has no strong incentive to deploy RPKI
 - We need a multiple-line defense against attack
 - prevention, detection, mitigation
- Not chartered by SIDR
 - Work together with IDR
 - For the ultimate goal: to Secure IDR
 - Things can change, re-charter to include?

2. Operational Complexity

- The additional complexity of the BGP implementations in the regular production routers is something that is really unwanted from operators.
 - An optional attribute, ignored when received
 - Complexity similar to the "add-paths" solution
 - draft-ietf-idr-add-paths-04.txt

3. Separate History Database

- Mitigation solutions need additional memory for a separate historical database.
 For example, PGBGP routers store trusted origins in their databases.
 - By default, DBGP only uses Adj-RIBs-In
 - Save memory & maintenance effort

4. Detection Facilitation

- What do the detection systems do when they receive DAS_PATHs.
 - DBGP doesn't block the view of monitors of detection systems (the traditional mitigation does).
 - Detection systems had already been deployed. They can examine DAS_PATHs and send notifications to the victim AS (e.g., send email).

5. Multiple DAS_PATHs Export

- How about including multiple DAS_PATHs in one UPDATE message?
 - Multiple DAS_PATHs export is enabled now.
- Different from add-path WG draft
 - All the paths in "add-path" are available
 - All the paths in DAS_PATHs are unavailable

Thanks!