
File creation speedups
for NFSv4.2

Trond Myklebust
<Trond.Myklebust@netapp.com>

2© 2010 NetApp. All rights reserved.

Outline

Unstable file creation
– Motivation
– Definitions

– Implementation details

– Other issues

Change attribute issues
– Problem description

– Conclusion

3© 2010 NetApp. All rights reserved.

Unstable file creation

4© 2010 NetApp. All rights reserved.

Motivation

Speed up task of creating and writing a file.
– Currently requires at least 2 synchronous disk

accesses (one at file creation time, one at
WRITE/COMMIT time).

Speed up attribute changes
– Why do truncate, permission changes, etc need

to be synchronous operations if the client holds a
write delegation?

– NFSv4 is stateful. No longer bound by the
stateless constraints that implied all RPC calls
must be synchronous.

5© 2010 NetApp. All rights reserved.

Definition

Unstable files are defined as follows:
– The server is allowed to cache all metadata

changes until the client sends a COMMIT.
Can cache file creation, directory changes, setattr

changes etc.

– The client is required to recover all cached
metadata changes in the case of a server reboot.
May be required to create the file entirely from

scratch.
May be required to replay all SETATTR requests

made since the last COMMIT.

6© 2010 NetApp. All rights reserved.

Implementation

Add a new attribute: stable_state
– Read/write attribute that reflects whether or not

the file metadata is synced to disk.
– Client writes to this attribute at OPEN and

SETATTR to signal an unstable request.
Server MAY ignore the stable_state
Server MUST ignore the stable_state if the client

doesn't have a write delegation
– Required in order to resolve file loss due to an unlink()

versus loss due to server reboot.

– Client may later poll this attribute (as part of post-
op GETATTR etc) in order to find out if COMMIT
is required.

7© 2010 NetApp. All rights reserved.

Reboot recovery

Client uses new OPEN mode
(CLAIM_PREVIOUS_UNSTABLE) to signal it is
replaying an unstable file creation.

Server is expected to prevent creation of new
files during grace period in order to protect the
recovery process.

8© 2010 NetApp. All rights reserved.

Other issues

There may be consequences for other clients
after a server reboot
– Cached filehandles may change if the file needs

to be recreated from scratch
Server might want to mitigate effects by ensuring it

syncs file metadata to disk before replying to
READDIR or GETFH from other clients.

Note however that write delegation means these
clients are not actively caching the file.

© 2010 NetApp. All rights reserved.

Updates since IETF-79

Peter Staubach identified a recovery edge case:
– Client may be unable to recover during grace

period due to network partition
– After grace period expires, server may then

create a file with the same filehandle.

– How does the client find out whether or not this is
the same file it created?

© 2010 NetApp. All rights reserved.

Further information

See the internet draft “draft-myklebust-nfsv4-
unstable-file-creation”

11© 2010 NetApp. All rights reserved.

Change attribute
issues

12© 2010 NetApp. All rights reserved.

Problem statement

When sending multiple GETATTR calls in
parallel (e.g. as part of a WRITE compound) the
client needs to know which is the most recent
value for change attribute
– Problem is that change attribute is opaque to the

client.
There is no requirement for updates to be

monotonically increasing or to have any other
feature that the client can use.

– Client could use time_metadata, but that is only a
recommended attribute.
Also is subject to resolution issues

13© 2010 NetApp. All rights reserved.

Problem statement (part 2)

A second problem is that most common NFSv4
server out there (Linux) doesn't have a real
change attribute
– Uses ctime, but with 1sec resolution in most

cases.
Known spec violation, but there is no alternative

without changing the underlying filesystem formats.

Finally, want to allow the client to do clever
things if the server is implementing a true file
version counter.
– Allows for improved cache consistency checking

in the absence of a delegation.

© 2010 NetApp. All rights reserved.

Conclusion

We need a mechanism to impart more
information to clients about the change attribute
implementation

Propose the addition of a new per-filesystem
attribute “change_attr_type”
– Bitfield that describes the change attribute, with 5

bits currently defined:
 change_attr is monotonically increasing
 change_attr is a version counter
 change_attr is a version counter except pNFS case
 change_attr is time_metadata
 change_attr is undefined (i.e. structureless)

© 2010 NetApp. All rights reserved.

Further information

See the internet draft “draft-myklebust-nfsv4-
change-attribute-type”

16© 2010 NetApp. All rights reserved.

Questions?

	File creation speedups for NFSv4.2
	Outline
	Unstable file creation
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Change attribute issues
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Questions?

