
File creation speedups
for NFSv4.2

Trond Myklebust
<Trond.Myklebust@netapp.com>

2© 2010 NetApp. All rights reserved.

Outline

Unstable file creation
– Motivation
– Definitions

– Implementation details

– Other issues

Change attribute issues
– Problem description

– Conclusion

3© 2010 NetApp. All rights reserved.

Unstable file creation

4© 2010 NetApp. All rights reserved.

Motivation

Speed up task of creating and writing a file.
– Currently requires at least 2 synchronous disk

accesses (one at file creation time, one at
WRITE/COMMIT time).

Speed up attribute changes
– Why do truncate, permission changes, etc need

to be synchronous operations if the client holds a
write delegation?

– NFSv4 is stateful. No longer bound by the
stateless constraints that implied all RPC calls
must be synchronous.

5© 2010 NetApp. All rights reserved.

Definition

Unstable files are defined as follows:
– The server is allowed to cache all metadata

changes until the client sends a COMMIT.
Can cache file creation, directory changes, setattr

changes etc.

– The client is required to recover all cached
metadata changes in the case of a server reboot.
May be required to create the file entirely from

scratch.
May be required to replay all SETATTR requests

made since the last COMMIT.

6© 2010 NetApp. All rights reserved.

Implementation

Add a new attribute: stable_state
– Read/write attribute that reflects whether or not

the file metadata is synced to disk.
– Client writes to this attribute at OPEN and

SETATTR to signal an unstable request.
Server MAY ignore the stable_state
Server MUST ignore the stable_state if the client

doesn't have a write delegation
– Required in order to resolve file loss due to an unlink()

versus loss due to server reboot.

– Client may later poll this attribute (as part of post-
op GETATTR etc) in order to find out if COMMIT
is required.

7© 2010 NetApp. All rights reserved.

Reboot recovery

Client uses new OPEN mode
(CLAIM_PREVIOUS_UNSTABLE) to signal it is
replaying an unstable file creation.

Server is expected to prevent creation of new
files during grace period in order to protect the
recovery process.

8© 2010 NetApp. All rights reserved.

Other issues

There may be consequences for other clients
after a server reboot
– Cached filehandles may change if the file needs

to be recreated from scratch
Server might want to mitigate effects by ensuring it

syncs file metadata to disk before replying to
READDIR or GETFH from other clients.

Note however that write delegation means these
clients are not actively caching the file.

© 2010 NetApp. All rights reserved.

Updates since IETF-79

Peter Staubach identified a recovery edge case:
– Client may be unable to recover during grace

period due to network partition
– After grace period expires, server may then

create a file with the same filehandle.

– How does the client find out whether or not this is
the same file it created?

© 2010 NetApp. All rights reserved.

Further information

See the internet draft “draft-myklebust-nfsv4-
unstable-file-creation”

11© 2010 NetApp. All rights reserved.

Change attribute
issues

12© 2010 NetApp. All rights reserved.

Problem statement

When sending multiple GETATTR calls in
parallel (e.g. as part of a WRITE compound) the
client needs to know which is the most recent
value for change attribute
– Problem is that change attribute is opaque to the

client.
There is no requirement for updates to be

monotonically increasing or to have any other
feature that the client can use.

– Client could use time_metadata, but that is only a
recommended attribute.
Also is subject to resolution issues

13© 2010 NetApp. All rights reserved.

Problem statement (part 2)

A second problem is that most common NFSv4
server out there (Linux) doesn't have a real
change attribute
– Uses ctime, but with 1sec resolution in most

cases.
Known spec violation, but there is no alternative

without changing the underlying filesystem formats.

Finally, want to allow the client to do clever
things if the server is implementing a true file
version counter.
– Allows for improved cache consistency checking

in the absence of a delegation.

© 2010 NetApp. All rights reserved.

Conclusion

We need a mechanism to impart more
information to clients about the change attribute
implementation

Propose the addition of a new per-filesystem
attribute “change_attr_type”
– Bitfield that describes the change attribute, with 5

bits currently defined:
 change_attr is monotonically increasing
 change_attr is a version counter
 change_attr is a version counter except pNFS case
 change_attr is time_metadata
 change_attr is undefined (i.e. structureless)

© 2010 NetApp. All rights reserved.

Further information

See the internet draft “draft-myklebust-nfsv4-
change-attribute-type”

16© 2010 NetApp. All rights reserved.

Questions?

	File creation speedups for NFSv4.2
	Outline
	Unstable file creation
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Change attribute issues
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Questions?

