
Removing TLS from RPKI
Provisioning Protocol

Rob Austein <sra@isc.org>

Maastricht, July 2010

 Executive Summary

 We added TLS to solve a problem (message replay)

 TLS as we’re using it creates real operational headaches

 There are better ways to solve the problem

 So let’s remove TLS and do one of the better things

 Problem We Were Trying To Solve

 Replay example
 Child requests issuance with key A

 Attacker captures copy of child’s request

 Server issues with key A

 Time passes

 Key A is compromised

 Child requests reissuance with new key B

 Server reissues with key B

 Child requests revoke of all certs with key A

 Server revokes all certs with key A

 Attacker replays saved request

 Server reissues with old compromised key A

 Oops

 Notes
 A and B are RPKI keys

 BPKI key not compromised

 TLS In Theory And Practice

 In theory, long-lived TLS session would prevent replay here

 In practice, TLS does prevent replay here, but almost by accident
 There is no long-lived session, TLS or otherwise, we’re using HTTPS

 Encryption makes capture hard for attacker

 Client TLS cert makes impersonating client hard for attacker

 In theory, TLS just uses same BPKI keys and certs as CMS does

 In practice, early testbed experience with TLS has been wretched
 TLS requires extra config due to virtual hosting problem

 TLS Server Name Indication requires DNS hackery

 TLS configuration oops is most single common failure

 TLS configuration oops is nightmare to debug

 Other Issues

 Our use of TLS relies on client certificates
 Across organizational boundaries

 Few real-world examples of this

 Massive duplication between CMS and TLS
 ...Except where TLS is worse

 We need CMS anyway, for audit trail

 All authorization is done based on CMS (audit again)

 CMS could do encryption too if we needed that (we don’t)

 Easier Replay Protection

 Trivial: CMS timestamps
 Already present

 Just insist that it increase monotonically

 Good enough for attack described above

 Epsilon more work: serial numbers
 Add field to XML header

 Insist that serial be one greater than last recorded serial number

 Handles sub-second granularity problem

 Need reset mechanism, probably just a timeout

 Not obvious what to do if one detects a sequence gap

 My preference: just CMS timestamp, at least for now
 Minimal change and solves the known problem

 "Never test for an error condition you don’t know how to handle"

 Summary and Desired Outcome

 Proposed solution
 Remove TLS from provisioning protocol

 Add CMS timestamp check to protocol

 Declare victory and move on

 Discussed on mailing list April 2010
 Response generally favorable

 But no definite conclusion

 Chance to simplify an IETF protocol does not occur very often
 Seize the moment

 Thank you!

