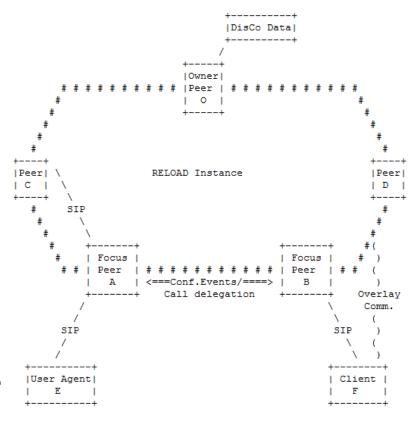
A RELOAD Usage for Distributed Conference Control (DisCo)

draft-knauf-p2psip-disco-00

Alexander Knauf
Gabriel Hege
Thomas Schmidt
Matthias Wählisch

alexander.knauf@haw-hamburg.de, hege@fhtw-berlin.de, {t.schmidt,waehlisch}@ieee.org

Outline


- 1. Problem statement and objectives
- 2. Distributing a conference focus with SIP
- 3. Publishing a distributed conference in RELOAD
- 4. Proximity-aware focus selection

Problem Statement for Conferences in P2PSIP Scenarios

- A conference in the tightly coupled model is managed by a single entity called focus in SIP:
 - Maintains signaling and media parameter negotiation
 - May perform media mixing functions
- Problem (1): The Conference URI
 - Identifies the multiparty session, and
 - locates the conference focus
 - Single point of failure
- Problem (2): No dedicated server architecture in P2PSIP
 - Media mixing performed at the end-user devices
 - Scaling problem within large conferences
 - Conference must be registered and globally accessible
 - Demands a registrar, e.g., available through DNS

Objectives of Distributed Conference Control

- Separate the logical conference ID from the controlling entities:
 - Allows multiple focus peers to manage a single conference
 - Increases robustness against focus failures
- RELOAD *Usage* for Distributed Conference Control:
 - Conference URI is registered as a key for several focus peers that are responsible for conference control

Distributing a focus with SIP

- First Step: Transparent distribution of the conference focus
 - Participants in role of focus peers are responsible for a subset of conference members
 - Signaling messages sent from several focus peers appear as originating from one 'virtual' conference focus
 - Routing decision based on an additional *Record-Route* header pointing to the responsible focus peer

```
INVITE sip:bob@dht.example.com SIP/2.0
Call-ID: 0815@141.22.26.55
CSeq: 1 INVITE
From: <sip:conference@dht.example.com>;tag=134652
To: <sip:bob@dht.example.com>;tag=643684
...
Contact: <sip:conference@dht.example.com>;isfocus
Record-Route: <sip:alice@dht.example.com>
Record-Route: <sip:alice@dht.example.com>
```

 Alice receives message through the Record-Route and – as responsible focus peer - intercepts message from Bob

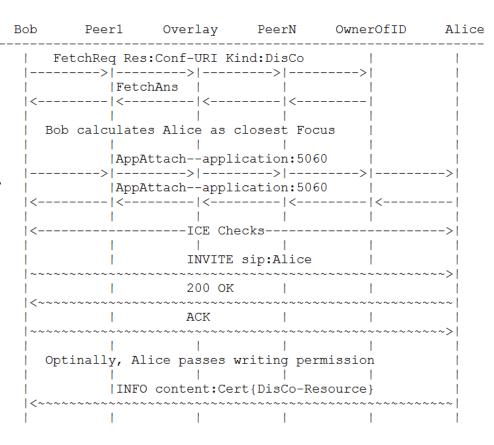
Operations in a Distributed Conference

- Second Step: Definition of protocol schemes for
 - State synchronization: Achieved by conference event package [RFC4575]
 extended by elements describing a focus peer's local state
 - Focus peers get consistent and global view of conference state
 - Call delegation: Transfer calls using SIP REFER requests carrying session identifier (for semantic recognition of calls)
 - Used in cases of overloading, leaves or failures of focus peers
 - Focus Discovery: Allocating new focus peers that support the conference
 - Enables load distribution

Definition of a Distributed Conferencing (DisCo) Kind

- DisCo-Registration stores a dictionary of :
 - Address-of-Records or
 Node-IDs of focus peers
 - A coordinates vector
 describing the focus'
 relative network position
- DisCo-Registration is a shared resource of all focus peers

```
enum {
  sip focus uri (1),
  sip focus node id (2), (255)
} DisCoRegistrationtType;
struct {
  opaque coordinate<0..2^16-1>
  select (DisCoRegistrationtType.type) {
    case sip focus uri:
      opague uri<0..2^16-1>
    case sip focus node id:
      Destination destination list<0..2^16-1>
    /* This type can be extended */
} DisCoRegistrationData;
struct {
  DisCoRegistrationtType type;
 uint16 length;
  DisCoRegistrationData data;
} DisCoRegistration;
```


Creating a Conference

- 1) Probe on existence of Conference URI
 - StatReq is sent to storing peer for duplicate addresses detection
- 2) Request a new certificate that is used for the DisCo-Registration
 - Certificate for the "virtual" conference user
- Store mapping Conf-ID to <creating peer, coordinates value> at storing peer

Enroll.Serv	Alice	Peer1	Overlay	PeerN	StoringPeer
 		tReq Res:C > StatA	>	> >	 >
 <==Cer			<	 	
 ===Cer	 t==> Sto	reReq Res:	 Conf-URI Kin	 ds:DisCo[,	SIP]
	 	> Store	> Ans	> 	>
	<	< 	< 	< 	

Joining a Conference and publishing Focus-ability

- Resolve Conf-ID by RELOAD fetch request
 - Answer contains available focus peers
- 2) Select closest focus
- 3) Establish transport connection by AppAttach request to Alice
- 4) ICE-Checks
- Create SIP dialog using the existing transport
- 6) Alice passes writing permission for the DisCo-Registration to Bob
- Bob may stores its mapping and becomes a *potential* focus peer

Thanks for your attention!

Questions?

Alexander Knauf, Gabriel Hege, Thomas Schmidt, Matthias Wählisch http://inet.cpt.haw-hamburg.de/