Management of 6LoWPAN Networks

Jürgen Schönwälder, Siarhei Kuryla

IETF 78, Maastricht, 2010-07-26

6LoWPAN = IPv6 over IEEE 802.15.4

IEEE 802.15.4 Characteristics

- Small frame size (max frame size = 127 bytes)
- Low power devices (some battery operated)
- Limited memory and processing power
- Low bandwidth (max data rate = 250 kbps)
- Large scale and dense deployments
- Devices and channels tend to be unreliable
- Devices may use sleep schedules to conserve energy

6LoWPAN

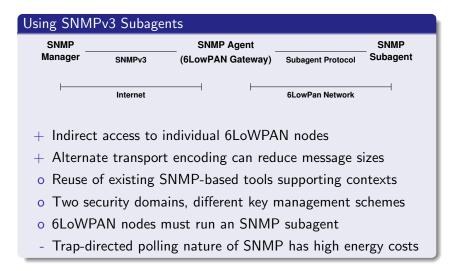
- IPv6 over Low-Power Wireless Personal Area Networks
- RFCs 4919, 4944, several Internet-Drafts

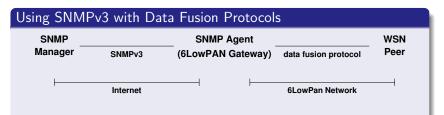
IEEE 802.15.4/6LoWPAN/IPv6/...

Protocol Stac	k — The Big Picture	
	CoAP SNMP …	
	UDP	
	IPv6 RPL	
	6LoWPAN	
	IEEE 802.15.4	

Why 6LoWPAN Management?

- "Autonomic devices won't need management so don't waste your time on the wrong problem..."
- Well, no, for the foreseeable future, you will end up managing the autonomic system (one more control loop)
- Key management is for example a largely unsolved problem (but specialized keying protocols might help)


Example Management Questions:


- How much energy is left in my nodes/network?
- How many nodes disappeared during the last night/day?
- What is the temperature, pressure, (add your favorite sensor here) distribution within the network?
- What is wrong with my 6LoWPAN network?

Using SNMPv3 End-to-End				
SNMP Manager	SNMPv3	SNMP Agent		
Internet	6LowPAN Ne	etwork		
 + Straight forward access to individual 6LoWPAN nodes + Reuse of existing deployed SNMP-based tools 				
 End-to-end security, end-to-end key management Message size and potential fragmentation issues 				
 6LoWPAN nodes must Trap-directed polling na 	run an SNMP engine			

Using SNMP	v3 Proxies			
SNMP		SNMP Proxy		SNMP
Manager	SNMPv3	(6LowPAN Gateway)	SNMPv3	Agent
	Internet	61	LowPAN Network	

- + Indirect access to individual 6LoWPAN nodes
- + Alternate transport encoding can reduce message sizes
- o Reuse of existing SNMP-based tools supporting proxies
- o Two security domains, different key management schemes
- 6LoWPAN nodes must run an SNMP engine
- Trap-directed polling nature of SNMP has high energy costs

- + Indirect access to individual 6LoWPAN nodes
- + Leveraging data fusion protocols
- $+\,$ SNMP agent acting as a cache, no expensive polling
- o Reuse of existing SNMP-based tools supporting contexts
- o Two security domains, different key management schemes
- ? No real advantage of 6LoWPAN technology oops

SNMP over 6LoWPAN Prototype

Targeted Hardware

ATmega1284PV microcontroller:

- runs at 20 MHz
- 16K of RAM
- 128K of ROM (Flash)

Contiki-SNMP

- implemented in C programming language
- build on top of Contiki uIPv6 stack

Contiki-SNMP Overview

General Features

- SNMP messages up to 484-byte length
- Get, GetNext and Set operations
- SNMPv1 and SNMPv3 message processing models
- USM security model
- MIB API to define and configure accessible managed objects

USM Security

- HMAC-MD5-96 authentication protocol
- CFB128-AES-128 symmetric encryption protocol

Implemented MIB Modules and Static Memory Usage

MIB Modules

- SNMPv2-MIB SNMP entity information
- IF-MIB network interface information
- ENTITY-SENSOR-MIB temperature sensor readings

SNMPv1 and SNMPv3 enabled

- 31220 bytes of ROM (around 24% of the available ROM)
- 235 bytes of statically allocated RAM

SNMPv1 enabled

- 8860 bytes of ROM (around 7% of the available ROM)
- 43 bytes of statically allocated RAM

Maximum	Maximum Observed Stack Usage			
	Version	Security mode	Max. stack size	
	SNMPv1	-	688 bytes	
	SNMPv3	noAuthNoPriv	708 bytes	
	SNMPv3	authNoPriv	1140 bytes	
	SNMPv3	authPriv	1144 bytes	

Heap Usage

- not more than 910 bytes for storing an SNMPv1 message
- 16 bytes for a managed object in the MIB
- if a managed object is of a string-based type heap is used to store its value

Response Latency



Figure: Time taken for transferring and processing an SNMP request.

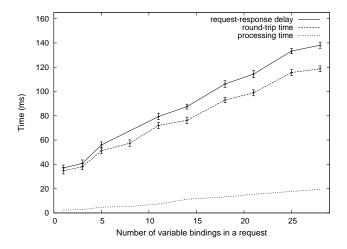


Figure: Time spent in transferring and processing SNMPv1 requests and responses as a function of the number of variable bindings in a request.

IEEE 802.15.4/6LoWPAN/IPv6/...

Ρ

rotocol Stac	k — The MIE	8 Picture		
	СоАР	SNMP MIB		
		UDP MIB		
			PL 11B	
		6LoWPAI ???	N	
	IE	EE 802.1	5.4	

MIB / ???

SNMP Applicability to 6LoWPAN Networks

draft-hamid-6lowpan-snmp-optimizations-02.txt

- Implementing SNMP in resource constrained networks
 - How to implement minimal VACM and USM?
 - Impact of different security mechanisms
 - . . .
- Deploying SNMP in very resource constrained networks
 - Naming and addressing issues
 - Timeouts and retransmissions
 - Polling intervalls and caching issues
 - Usage of the protocol operations
 - ...
- Applicable MIB objects/modules
 - Which MIB objects are essential to support?
 - Which MIB objects are recommended to support?
 - Which MIB objects are optional?
 - . . .