
Simula Research Laboratory AS

TCP modifications to reduce

thin-stream latency

Andreas Petlund

30.07.2010

Anarchy Online server-side trace analysis

Griwodz et al.: “The fun of using TCP for an MMORPG” (2006)

Average RTT allows for a satisfactory user

experience (in theory).

Maximum RTTs stretch the limit for a

satisfactory experience.

When loss occurs and retransmissions must

be made to recover, application-layer latencies

reach critical levels.

Result: degraded user experience.

Interactive applications require low latency:

Highest observed

application-layer

latency: 67 seconds!

Interactive thin streams over TCP

Time-dependent applications

High retransmission latencies

Analysis of TCP for thin streams

Linux TCP flavours (2.6.16) analysed:

– New Reno -SACK -DSACK -FACK

– DSACK+FACK -Westwood -BIC -Vegas

Poor overall performance for interactive thin streams

with all tested flavours.

New Reno best “on average” for thin-stream latency.

Griwodz et al.: “The fun of using TCP for an MMORPG” (2006)

Thin streams need help with latency!

• Greedy streams (throughput) the driving force in TCP

development.

• Mechanisms have been suggested that (partially) address the

issue (e.g. Early Retransmit - RFC5827)

• Thin streams need more help to deal with latency issues.

Interactive, thin-stream applications that benefit from the thin-stream mechanisms

include stock exhange applications, remote control of PCs (like RDP, VNC and

SSH), voice over IP and networked games.

Timeouts and

exp. backoff

TCP and SCTP standard RTOmin: 1000ms

TCP in Linux uses a 200ms RTOmin

Retransmission time-out (RTO) will double for

each consecutive loss.

Use linear timeouts (LT) for thin streams

Fast retransmissions
– Thin streams often have <

1 packet per RTT.

– Timeout happens before a

fast retransmission can be

triggered.

– For thin streams: fast

retransmit on first received

dupACK (mFR)

– Following scheme from

Early Retransmit (but

consequently retransmit

on first dupACK)

Sender Receiver

X

1

ACK 1
2

dupACK 1
4

dupACK 1
5

dupACK 1
FR 2

Timeout 2

3

FR 2

Redundant data bundling

– Preempting the experience

of loss.

– Will not increase number of

sent packets.

– Introduces inherent

redundancy.

Thin-stream detection

Retransmission mechanisms :

packets in flight (PIF) <= 4

Bundling:

size_unacked(p1) + size(p2) < MSS

• Modifications triggered only when these conditions are

met.

• All modifcations are sender-side only. Tested to work

with Windows (XP, Vista, 7), BSD, OSX and Linux as

receivers.

Test results and analysis example

RTT: 100

IAT: 200

PS: 100

Loss: 5%
Available from

2.6.34 Linux

Kernel

(unmodified) TCP New Reno:

Exponential increase in latency

with each subsequent

retransmission.

Thin-stream modifications:

Keep latency low, also

when loss occurs

Fairness
Packet-based drop strategy, small buffer

•Greedy stream

goodput shown

•1Mbps

bottleneck

•120 Bytes

packets

•RTT 100ms

Unmodified TCP:

The thin streams

are suppressed

by the greedy.

The basic

bundling

mechanism is

too aggressive

in very high

congestion

scenarios.

Fairness
Byte based drop strategy, large buffer

•Greedy stream

goodput shown

•1Mbps

bottleneck

•120 Bytes

packets

•RTT 100ms

•Behaviour

depends on

drop strategy

and queue

length.

?

Thin stream Thick streamvs

Questions / Discussion

