TCP modifications to reduce

thin-stream latency

Andreas Petlund

Simula Research Laboratory AS

30.07.2010

simula . research laboratory

Anarchy Online server-side trace analysis

Interactive thin streams over TCP

	payload size (Bytes)			packet interarrival time (ms)						avg. bandwidth	
application								percentiles		requirement	
(platform)	average	min	max	average	median	min	max	1%	99%	(pps)	(bps)
World of Warcraft	26	6	1228	314	133	0	14855	0	3785	3.185	2046
Anarchy Online	98	8	1333	632	449	7	17032	83	4195	1.582	2168
Age of Conan	80	5	1460	86	57	0	1375	24	386	11.628	12375
BZFlag [†]	30	4	1448	24	0	0	540	0	151	41.667	31370
Casa (sensor network)	175	93	572	7287	307	305	29898	305	29898	0.137	269
Windows remote desktop	111	8	1417	318	159	1	12254	2	3892	3.145	4497
Skype (2 users) [†]	236	14	1267	34	40	0	1671	4	80	29.412	69296
SSH text session	48	16	752	323	159	0	76610	32	3616	3.096	2825

[†] Application using TCP fallback due to UDP being blocked by a firewall.

Time-dependent applications High retransmission latencies

Analysis of TCP for thin streams

Linux TCP flavours (2.6.16) analysed:

New Reno
- SACK
- DSACK+FACK
-Westwood
-BIC
-Vegas

Poor overall performance for interactive thin streams with all tested flavours.

New Reno best "on average" for thin-stream latency.

Griwodz et al.: "The fun of using TCP for an MMORPG" (2006)

[simula . research laboratory]

Thin streams need help with latency!

- Greedy streams (throughput) the driving force in TCP development.
- Mechanisms have been suggested that (partially) address the issue (e.g. Early Retransmit - RFC5827)
- Thin streams need more help to deal with latency issues.

Interactive, thin-stream applications that benefit from the thin-stream mechanisms include stock exhange applications, remote control of PCs (like RDP, VNC and SSH), voice over IP and networked games.

Timeouts and exp. backoff

Retransmission time-out (RTO) will double for each consecutive loss.

Use linear timeouts (LT) for thin streams

TCP and SCTP standard RTOmin: 1000ms TCP in Linux uses a 200ms RTOmin

[simula . research laboratory]

Fast retransmissions

Thin streams often have < 1 packet per RTT.

- Timeout happens before a fast retransmission can be triggered.
- For thin streams: fast retransmit on first received dupACK (mFR)
- Following scheme from Early Retransmit (but consequently retransmit on first dupACK)

Redundant data bundling

Preempting the experience of loss.

- Will not increase number of sent packets.
- Introduces inherent redundancy.

Thin-stream detection

Retransmission mechanisms : packets in flight (PIF) <= 4

Bundling:

size_unacked(p1) + size(p2) < MSS</pre>

- Modifications triggered <u>only</u> when these conditions are met.
- All modifications are sender-side only. Tested to work with Windows (XP, Vista, 7), BSD, OSX and Linux as receivers.

Test results and analysis example

[simula . research laboratory]

Fairness

Packet-based drop strategy, small buffer

Fairness

TCP variation used for competing streams

[simula . research laboratory]

Questions / Discussion

Thin stream

VS

Thick stream

[simula . research laboratory]