Constrained RESTful Environments
WG (core)

Chairs:
Cullen Jennings <fluffy@cisco.com>

Carsten Bormann <cabo@tzi.org>
Mailing List:

core@ietf.org
Jabber:

core@jabber.ietf.org

http://6lowapp.net core@IETF78, 2010-07-28 1

* We assume people have read the drafts

* Meetings serve to advance difficult issues by making
good use of face-to-face communications

 Be aware of the IPR principles, according to RFC 3979
and its updates

v'Blue sheets
v'Scribe(s)

http://6lowapp.net core@IETF78, 2010-07-28

Milestones (from WG charter page)
http://datatracker.ietf.org/wa/core/charter/

Document submissions to IESG:

Apr 2010 Select WG doc for basis of CoAP protocol

e Dec 2010 1 CoAP spec with mapping to HTTP REST
submitted to IESG as PS

Dec 2010 2 Constrained security bootstrapping spec
submitted to IESG as PS

* Jan 2011 Recharter to add things
reduced out of initial scope

http://datatracker.ietf.org/wg/core/charter/
http://datatracker.ietf.org/wg/core/charter/

Drafts http://tools.ietf.org/wg/core/

Draft name Rev. Dated Status Comments, Issues
Active:
‘ draft-ietf-core-coap -01 2010-07-08 Active mmm2/16

Related Active Documents (not working group documents):

(To see all core-related documents, go to

re-rel r in th -archiv

O fi- -coap-mi -05 2010-07-06
draft-braun-core-compressed-ipfix -01 2010-03-07

@) draft-eggert-core-congestion-control -00 2010-06-23
@ draft-hartke-coap-observe -01 2010-07-08
- i- - -applications -01 2010-07-08
draft-moritz-6lowapp-dpws-enhancements -01 2010-06-16
draft-oflynn-6lowapp-bootstrapping -00 2010-01-27

@ draft-oflynn-core-bootstrapping -01 2010-07-12
O - -core-sleepi -00 2010-06-29
draft-shelby-core-coap -01 2010-05-10
draft-shelby-core-coap-req -01 2010-04-20
draft-tolle-core-ebhttp -00 2010-03-23
-van -Core- -01 2010-07-11

CoAP Plugtest Sunday, Jul 25, 2010

~ 10 implementations of core-coap-01
most physically present, some via Internet
IPv6 and IPv4

e Basic interoperability done
message format, options encoding, transaction model
GET, basic link-header format

Need to work more on specific features
Asynchronous transactions, subscribe (3 interoperable)
coap-misc features such as token, block, ... (3—4 interop.)

Followup plugfest 1300-1530 today

let’s just hijack the terminal room

http://6lowapp.net core@IETF78, 2010-07-28 5

09:00
09:10
09:50
10:10
10:30
10:50
11:05
11:20

78t TETF: core WG Agenda

Introduction, Agenda, Status

1 — core CoAP

1 — Subscription option (-observe)
1 — coap-misc

1 — Congestion Control

1 — Sleeping Nodes

2 — Bootstrap approach

1/2 — CoAP Usage

http://6lowapp.net core@IETF78, 2010-07-28

Chairs (10)
ZS (40)
KH (20)
CB (20)
LE (20)
AR (15)
BS (15)
PV (15)

09:00
09:10
09:50
10:10
10:30
10:50
11:05
11:20

78t TETF: core WG Agenda

Introduction, Agenda, Status

1 — core CoAP

1 — Subscription option (-observe)
1 — coap-misc

1 — Congestion Control

1 — Sleeping Nodes

2 — Bootstrap approach

1/2 — CoAP Usage

http://6lowapp.net core@IETF78, 2010-07-28

Chairs (10)
ZS (40)
KH (20)
CB (20)
LE (20)
AR (15)
BS (15)
PV (15)

Constrained Application Protocol (CoAP)
draft-ietf-core-coap-01

Z. Shelby, B. Frank, D. Sturek

CoRE WG, IETF-78 Maastricht
e

Progress since Anaheim

coap-00 (working group document)
Removed TCP binding
Removed the magic byte header
Removed the Uri-Code option
Minor fixes and editing

coap-01 (first complete and stable version)
New clean transaction model
Subscription moved to coap-observe-xx
Improved header option scheme

Completed all sections (proxying, HTTP mapping,
discovery)

Minor improvements and fixes (15 tickets in total)

The CoRE Architecture

- REST >

The Internet Constrained Environments

What CoAP is (and is not)

CoAP is
A RESTful protocol
Both synchronous and asynchronous
For constrained devices and networks
Specialized for M2M applications
Easy to proxy to/from HTTP

CoAP is not
A replacement for HTTP
General HT TP compression
Separate from the web

The Header

0 1 2 3
01 234567890123456789012345¢46789101
T I S it St A RS

|ver| T | oOC | Code | Transaction ID
T I S it St A RS
| Options (if any)
T i ity St RS
| Payload (if any)

tot—t—t—t—t—t—t—t—t—t—t—t—F—t—t -ttt —F—t—F—t—F—F—F—F—t—F—t—F—+—+

Typical Option:

0 1 2 3 4 5 6 7
S S SO Ut ST S SR S ST S &

| option delta | length | value

+--—tttttt -ttt -t -t ———+

The Transaction Model

Transport
CoAP is defined for UDP Application
Transaction pp—

Single message exchange
between end-points

CoAP Transactions

CON, NON, ACK, RST I
REST
Piggybacked on transaction messages

Method, Response Code and Options (URI,
content-type etc.)

Synchronous Transaction

Client Server Client Server

CON tid=47		CON tid=53
GET /foo		GET /baz
S —— >	e >	
ACK tid=47		ACK tid=53

| |

| 200 "<temp...

| 404 "Not...

Asynchronous Transaction

Client Server

| CON tid=48 |
| GET http://n.. |

. Time Passes ...

| |
| CON tid=783 |
| 200 http://n.. |
| "<html.. |
|
|
|

http://n
http://n

Caching

CoAP includes a simple caching model
Current only for the GET method
Cache life
Controlled by the Max-Age Option
Cache refresh and versioning
Using the Etag Option
A proxy may participate in caching
Usually on behalf of a sleeping node

Resource Discovery

Service Discovery
Leave this to e.g. DNS-SD
Registering coap with dns-sd.org
Resource Discovery
Retrieving the links offered by CoAP servers
GET /.well-known/r

Returns a link-header style format
URL, name, description, content-type, short-url, id

Query: GET /.well-known/r?n=Temperature

HTTP Mapping

coap-01 defines a simple HT TP mapping for:
Realizing the same APl over HTTP or CoAP
Proxying between CoAP and HTTP

CoAP > HTTP mapping is simple

HTTP > CoAP mapping requires checks
Return an error if mapping not possible

Caching may be performed by a CoAP-HTTP

proxy

I-D Proposals

coap-observe-01
Subscription option integration
Simple HTTP poll mapping

coap-misc-05
Block option integration

coap-congestion-00

Known Bugs

Feedback from CoRE Plugfest Sunday
Small link-format clarifications
Clarify use of Uri-Authority wrt. proxying
Error behavior on unknown critical option
Reserve user-defined option (or space) (Peter)
Fix link-format references and /.well-known (Eran)
Informative reference to link-format and e.g. /w/r

Open Issues

Limit options to appear once? (Peter)

Proposal to use 2 byte option header (Peter)
Separate Query-Parameters option? (Peter)
Could we remove the Uri-Scheme option? (Peter)
How to rationalize multicast in URIs? (Peter)

Improving discovery section (Kerry, Zach)

Align DNS-SD description. Only define _coap type.
Instance names and TXT up to application.

SHOULD for CoAP server on default port
Multicast discovery through a no-op (CON+0)
Recommend unicast GETs of /.well-known/r
Should there be a /.well-known/host-meta?

s Section 6.4 ‘HTTP discoverm needed?

.
Next Steps

Integrate Subscription Option (via interop)?
Integrate Block Option (via interop)?

Close known bugs (via tickets)

Make tickets for open issues

Release coap-02 ~2 weeks after Maastricht

09:00
09:10
09:50
10:10
10:30
10:50
11:05
11:20

78t TETF: core WG Agenda

Introduction, Agenda, Status

1 — core CoAP

1 — Subscription option (-observe)
1 — coap-misc

1 — Congestion Control

1 — Sleeping Nodes

2 — Bootstrap approach

1/2 — CoAP Usage

http://6lowapp.net core@IETF78, 2010-07-28

Chairs (10)
ZS (40)
KH (20)
CB (20)
LE (20)
AR (15)
BS (15)
PV (15)

23

Observing Resources in COAP

Klaus Hartke

24

Resources

/sensors/temperature 22.0°C | 22.1°C | 21.9°C
—
time
server
~)
g 2
client
(confirmable) (acknowledgement)
GET 200 OK
Uri-Path: /sensors/temperature Content-Type: text/xml

<temperature value="22.1 °C" />

The state of a resource can change over time. We want to observe this!

25

Subject/Observer Design Pattern

Step 1 Subject

Step) Subject

We can model resources as subjects!
Observers are notified whenever the state of the resource changes.

zero or more observers
subscribe to a subject

<

the subject automatically
notifies all observers
whenever a predefined
event occurs

Yvy

Observer

Observer

26

Implementing the Design Pattern in CoAP

Model resources as subjects

Observers are notified whenever the state of the resource changes

RESTful:

Observable resources are identified by URIs
Observers are notified by exchange of resource state representations
Messages are self-describing

Hypermedia as the engine of application state:
A server premediates application state transitions by providing links in resources

UDP-based:

Subscription and notifications are implemented by the exchange of messages
These messages arrive out of order, appear duplicated, or go missing without notice

coap-01 introduces transaction layer (CON/NON/ACK/RST)

27

Implementing the Design Pattern in COAP

/sensors/temperature 22.0°C 22.1°C I 21.9°C

| | —

! ! time

v v

server
~ ™)))
3 2 3 2 9
client
(confirmable)
GET
Uri-Path: /sensors/temperature
—> Subscription-Lifetime: 60s
(acknowledgement) (non-confirmable) (confirmable)
200 OK 200 OK 200 OK
Content-Type: text/xml Uri-Path: /sensors/temperature Uri-Path: /sensors/temperature
Subscription-Lifetime: 60s Content-Type: text/xml Content-Type: text/xml
Subscription-Lifetime: 30s Subscription-Lifetime: 10s
<temperature value="22.0 °C" />
<temperature value="22.1 °C" /> <temperature value="21.9°C" />
knowled t
(acknowledgement) 8

0

Caching

/sensors/temperature 22.1°C 21.9°C 22.1°C
| —
! time
v
server /}
~) ~ ®) w
8 2 % % 2 °
client 1t
(confirmable) (confirmable)

GET
Uri-Path: /sensors/temperature
Subscription-Lifetime: 60s

(acknowledgement)

200 OK

Content-Type: text/xml
Subscription-Lifetime: 60s
Etag: Oxdb21ada4

<temperature value="22.1 °C" />

GET

Uri-Path: /sensors/temperature
Subscription-Lifetime: 60s
Etag: Oxdb21ada4

(acknowledgement)

200 OK

Content-Type: text/xml
Subscription-Lifetime: 60s
Etag: 0x22bd01c4

<temperature value="21.9 °C" />

(confirmable)
304 Not Modified

Uri-Path: /sensors/temperature

Etag: Oxdb21ada4

Subscription-Lifetime: 10s

(acknowledgement)

0

29

Proxying

/sensors/temperature 22.0°C 21.9°C
! —
! time
v
server
~ ™ ™
g B s
proxy
~ e ™
Ly
& S % % Q
client

30

Multiple observers

server

clients

server

clients

option

simply subscribe multiple observers

to a resource

AVAVANR

server

option 3

intermediary

clients

subscribe an IPv6 multicast group to

a resource

A"

(confirmable)

GET

Uri-Path: /sensors/temperature
Subscription-Lifetime: indefinite
Reply-To: [ffxx:xxxx]:61616

option 2

subscribe multiple observers to an
intermediary node that maintains a
single subscription to a resource

V]
AVAVANR

31

Summary

RESTful sub/not mechanism based on well-known design pattern

Observing resources is fun!
Once you start looking for observable things, you see them everywhere!

All prerequisites already in coap-01

Concrete proposal that works well with caching, proxying and many observers

Running code

2 servers & 3 client implementations

Next steps
Nail down exact semantics of Subscription-Lifetime option

Check interactions with other CoAP features

32

09:00
09:10
09:50
10:10
10:30
10:50
11:05
11:20

78t TETF: core WG Agenda

Introduction, Agenda, Status

1 — core CoAP

1 — Subscription option (-observe)
1 — coap-misc

1 — Congestion Control

1 — Sleeping Nodes

2 — Bootstrap approach

1/2 — CoAP Usage

http://6lowapp.net core@IETF78, 2010-07-28

Chairs (10)
ZS (40)
KH (20)
CB (20)
LE (20)
AR (15)
BS (15)
PV (15)

33

The block option

« Some resource representations are > MTU bytes

 Transfer in blocks

0

©12345¢67
Fotototototot-t+-+

Iblocknr M| szx | M: More Blocks

S S S SR

0 1 szx: logz Blocksize — 4
©1234567895012345

e I R T S P SpU SR S
| block nr [M| szx |
ottt -ttt -t -F-F-F-F+-+-+-+ .« . .
0 1) Decisions:
©12345678901234567890123 . .
bttt roteabototota-eorrsr-++ @ Block size 1S power of 2

| block nr [M] szx |

U S 16 S BlOCk Size S 2048

http://6lowapp.net core@IETF78, 2010-07-28 34

The block option vs. methods

 GET: trivial
Receiver: watch Etag to obtain parts of same resource repr.
Also works for asynchronous responses (subscriptions)
* initiative is with responder, then!

 PUT, POST: trigger actual update on M=0

manage parallel operations based on token option

* Block is CRITICAL

http://6lowapp.net core@IETF78, 2010-07-28 35

Accept Option

 What media type would | want to get?
 Cf. Accept: in HTTP

* Option value: sequence of bytes, each byte is a
Content-Type

e Alternative: repeatable Content-Type

* Acceptis ELECTIVE

http://6lowapp.net core@IETF78, 2010-07-28 36

TeRlIs

URI encoding schemes not very useful (25 % gain)

Better: Provide shorter, temporary Ris
e.g., in a block transfer: provide TeRI with block 0

TeRI: 1 byte duration (lifetime), n bytes identifier

TeRl is ELECTIVE
Oops

http://6lowapp.net core@IETF78, 2010-07-28 37

Token

* Provide a way to relate a response to a request
beyond single-transaction TID

* Tokenis ELECTIVE

http://6lowapp.net core@IETF78, 2010-07-28 38

Uri-Authority-Binary

* IPv4, IPv6 IID, or IPv6 address (default: dest. address)
e optional port number (default: dest. port)

* detect which it is by length
2,4,6,8,10, 16, 18

http://6lowapp.net core@IETF78, 2010-07-28 39

Payload Length

* CoAP assumes known datagram length
no need to explicitly give payload length

* How to aggregate multiple messages in one packet?
do explicitly give payload length

* Payload-Length is CRITICAL

http://6lowapp.net core@IETF78, 2010-07-28 40

Duration Data Type (1)

Many Options need a Duration (length of timespan)
Resolution mostly 1 second

can use variable-length integer

often, there is no need for this complexity

0 1 2 3 4 5 6 7

e e i it s, S I o

| O... value |
L puips Sy Fp

T LTy S S
| 1... mantissa | exponent |
T

http://6lowapp.net core@IETF78, 2010-07-28 41

Duration Data Type (2)

Extremely easy to decode
#define DECODE 8 4(r) (r < HIBIT ? r : (r & MMASK) << (r & EMASK))

Reasonably easy to encode
two directions of rounding

Range: 0..127 s exact, 128 s .. 84d 22:53:52 s (—12.5 %)

Do we need more than 12 weeks?
Reserve 0xFF for “indefinite”

http://6lowapp.net core@IETF78, 2010-07-28 42

09:00
09:10
09:50
10:10
10:30
10:50
11:05
11:20

78t TETF: core WG Agenda

Introduction, Agenda, Status

1 — core CoAP

1 — Subscription option (-observe)
1 — coap-misc

1 — Congestion Control

1 — Sleeping Nodes

2 — Bootstrap approach

1/2 — CoAP Usage

http://6lowapp.net core@IETF78, 2010-07-28

Chairs (10)
ZS (40)
KH (20)
CB (20)
LE (20)
AR (15)
BS (15)
PV (15)

43

09:00
09:10
09:50
10:10
10:30
10:50
11:05
11:20

78t TETF: core WG Agenda

Introduction, Agenda, Status

1 — core CoAP

1 — Subscription option (-observe)
1 — coap-misc

1 — Congestion Control

1 — Sleeping Nodes

2 — Bootstrap approach

1/2 — CoAP Usage

http://6lowapp.net core@IETF78, 2010-07-28

Chairs (10)
ZS (40)
KH (20)
CB (20)
LE (20)
AR (15)
BS (15)
PV (15)

44

Sleeping and Multicast
Considerations for CoAP

Akbar Rahman
Juan Carlos Zuniga
Guang Lu

IETF 78, July 2010

http://tools.ietf.org/html/draft-rahman-core-sleeping-00

1 ETF

NASNST

Introduction AKX
1 E T F

= We further analyze the following CoAP requirements related
to “sleeping nodes” and “"multicast”:

= REQ 3: The ability to deal with sleeping nodes. Devices may be
powered off at any point in time but periodically "wake up" for brief
periods of time.

= REQ 4: Protocol must support the caching of recent resource
requests, along with caching subscriptions to sleeping nodes.

= REQ 9: CoAP will support a non-reliable IP multicast message to be
sent to a group of Devices to manipulate a resource on all the
Devices simultaneously. The use of multicast to query and advertise
descriptions must be supported, along with the support of unicast
responses.

Figure 1- Use Case of Originating M a1
CoAP Transaction and Sleeping Node
Node 1 Proxy Node Node 2
(sleep cycles) (always on) (always on)
1. CoAP: Exchange Sleep Schedule
< >
2. CoAP: REQUEST (GET
Configuration Info)
>
3. CoAP: ACK
< 4. HTTP: REQUEST (Get
Configuration Info)
>

Node 1
wakes up

Content — Configuration Info)

6. CoAP: RESPONSE (200 OK,

Content — Configuration Info)

5. HTTP: RESPONSE (200 OK,

Check Node
1 sleep
schedule (and
buffer

response)

7. CoAP: ACK

*Iv

Figure 2- Use Case of Terminating

1 ETF
CoAP Transaction and Sleeping Node
Node 1 Proxy Node Node 2
(sleep cycles) (always on) (always on)

1. CoAP: Exchange Sleep Schedule

>
2. HTTP: REQUEST (GET Meter
Reading)
<
Check Node
1 sleep (May need to use Long Polling,
schedule Retry-After, or other methods to
(and buffer prevent HTTP timeouts)

Node 1
wakes up

request)

3. CoAP: REQUEST (GET Meter
Reading)

4. CoAP: RESPONSE (200 OK,
Content — Meter Reading)

5. HTTP RESPONSE (200 OK,
Content — Meter Reading)

Further considerations for <&+
Sleeping Nodes PR

¢ \What format should the sleeping schedule be
in? And how do the nodes synchronize?

Wireless technologies typically support
procedures for the above:

For example, the proposed 802.15.4¢ draft supports
detailed PHY/MAC layer procedures for sleeping
schedule and synchronization

So, one approach for CoAP could be to leverage and
extend upon the PHY/MAC layer synchronization and
scheduling (e.g. for the CoAP layer in the Proxy to
have an APl to these lower layers to retrieve the
required information)

Figure 3- Multicast Problem Scenario

Constrained Network

Node 2

Node 3

Proxy Node

General Internet

2. CoAP: REQUEST (GET Info from
each individual Node)

Node 5

Multicast,
UDP

1. HTTP: REQUEST (GET Info from
all Nodes)

Unicast,
TCP

Node 1

Further considerations for <&+
Multicast PETE

e \What would the URI look like that the client
uses on the proxy?

e How would the proxy relay back the multitude
of responses?

¢ How would overall congestion control work?

¢ \What happens if some of the CoAP nodes
are sleeping?

NAISST
/

Conclusions (1/2)

= For CoAP to handle sleeping nodes:

= If the proxy node has an updated schedule
for each sleep node

= Then the proxy node can more optimally
buffer responses destined for sleeping nodes
as well as service incoming requests on behalf
of sleeping nodes via intercept caching

S~
A 4

T F

lll\‘-\

Conclusions (2/2)

= For CoAP to handle multicast:
= HTTP runs on TCP in the general Internet

= And IP multicast does not support TCP

®= The proxy node in the constrained network
needs to have functionality to support
interworking between multicast (in the
constrained network) and unicast (in the
Internet)

'_f"/"‘/"/‘—)
- A 4
1 E T F

Next Steps

¢ |f the WG agrees, then we can update our
draft to move beyond the problem statement
stage and move into the detailed solutions for

both sleeping node and multicast support for
CoAP

09:00
09:10
09:50
10:10
10:30
10:50
11:05
11:20

78t TETF: core WG Agenda

Introduction, Agenda, Status

1 — core CoAP

1 — Subscription option (-observe)
1 — coap-misc

1 — Congestion Control

1 — Sleeping Nodes

2 — Bootstrap approach

1/2 — CoAP Usage

http://6lowapp.net core@IETF78, 2010-07-28

Chairs (10)
ZS (40)
KH (20)
CB (20)
LE (20)
AR (15)
BS (15)
PV (15)

55

What is CORE chartered to do?

* Security, particularly keying of new Devices, is very
challenging [...]. The WG will work to select approaches to
security bootstrapping which are realistic [...]. To ensure
that any two nodes can join together, all nodes must
Implement at least one universal bootstrapping
method.

e Security can be achieved using either session security
or object security. For both object and session security,
the WG will work with the security area to select
appropriate security framework and protocol as well as
selecting a minimal required to implement cipher suite.
CoAP will initially look at CMS (RFC 5652), TLS/DTLS,
and EAP.

http://6lowapp.net core@IETF78, 2010-07-28 56

Bootstrapping

Colin O’flynn
Behcet Sarikaya (presenter)

Robert Cragie

Overview

Definition of Bootstrapping
Problems Faced

Existing Solutions
Proposed Framework
Fitting In with CoAP

Bootstrapping — What is it?

 The magic that takes a network from a box of
nodes to a fully functioning network

Bootstrapping — What is it not?

* Does not replace service or resource discovery

— Bootstrapping is finished when normal network
operation can begin, at which point service or
resource discovery can occur

Bootstrapping — Problems

® Merging Networks

® |f a3 node is already on a network, and the user wishes
this node to join another network, what happens?

® Node Mobility

® Resource Constraints
® Computational, Power, Size, and Price

® User Interface

® \Wide range of nodes: from full graphical LCD to no user
interface

® Security

Existing Solutions

® Examples of solutions to these problems exist in
several standards, such as :
® \WiFi Protected Setup (WPS)
® Bluetooth
® Wireless USB

® Typically defined for too narrow an application-
space for CoRE though. As CoRE nodes span the
range from:
® Tiny parasitic power devices to wall-powered nodes
® 8-bit microcontrollers to 32-bit processors

® |ow to High security requirements (ie: light switch vs.
smart meter)

Proposed Architecture

: Used during normal
network operation (e.g.: 802.15.4)
: Used for bootstrapping only

: [EEE 802.15.4, Power-line
Communications, IRDA, RFID, Simple physical link,
cellular, Ethernet, IPv6

: Defines what the user controls the
node with (e.g.: pushbutton, keyboard)

: Defines information exchanged
during bootstrapping (e.g.: channel settings,
encryption keys)

Proposed Architecture

. Defines supported security
methods for bootstrapping

— None
— EAP Methods, e.g. EAP TLS v1.2, etc.

— Asymmetric with User Authentication, Followed
by Symmetric

— Asymmetric with Certificate Authority, Followed
by Symmetric

— Cryptographically Generated Address Based
Address Ownership Verification

Proposed Architecture

: Actual messages
exchanged for bootstrapping

* The protocol is likely a wrapper on existing
authentication functions, e.g. EAP

e Bootstrap protocol will negotiate allowable
standards between nodes

— When a TV is joining a remote control, the
protocol must understand that the remote control
has very limited resources even though TV may
have a complex interface available

Fitting in with CoAP

* Bootstrapping requires input from other layers
to work!
— User needs to select networks/nodes to join

— Node may automatically join networks based on
available services

* Bootstrapping should NOT duplicate service discovery,
but work with the proper layers / standards

* Bootstrapping difficult to implement “cleanly”

Next Steps

Feedback from requirements of different
users, e.g. Zigbee IPSTACK group

Decide on standards which bootstrapping will
use

Fit bootstrapping and CoAP together

Finish the documentation as an architecture
document

Bootstrapping solution document in the next
stage

09:00
09:10
09:50
10:10
10:30
10:50
11:05
11:20

78t TETF: core WG Agenda

Introduction, Agenda, Status

1 — core CoAP

1 — Subscription option (-observe)
1 — coap-misc

1 — Congestion Control

1 — Sleeping Nodes

2 — Bootstrap approach

1/2 — CoAP Usage

http://6lowapp.net core@IETF78, 2010-07-28

Chairs (10)
ZS (40)
KH (20)
CB (20)
LE (20)
AR (15)
BS (15)
PV (15)

68

CoAP Utilization for Building Control

draft-vanderstok-core-bc-01

Peter van der Stok
Kerry Lynn

July 28, 2010

Motivating questions

Grouping of nodes
Service/Resource discovery
Handling of legacy

Size of uri

Battery-less devices
Multicast specification

78th IETF meeting July 28, 2010 Peter van der Stok 70

Grouping of nodes

Logical groups coincide with hierarchical building structure
* Lights in a room (activated by PIR)
« Convectors at a floor (controlled by floor temperature)
» On/Off switching in building (controlled by clock)

Example authorities
* //all.bldg6
* //all.west.bldg6
» //all.floor1.west.bldg6
* //all.bu036.floor1.west.bldg6

78th IETF meeting July 28, 2010 Peter van der Stok

71

Service/resource discovery

Nodes are grouped. Not resources
- all resources on a node belong to groups to which node belongs
One coap service assumed per node
Use DNS-SD to discover the coap service
Use DNS-SD to discover to coap service groups

A node returns its resources according to coap resource discovery

Equivalent with BACnet Who-is and Who has.

Groups/names are building/owner specific
Resource naming requires standardization for interoperability

78th IETF meeting July 28, 2010 Peter van der Stok 72

Handling of legacy

Silos use their individual networking standards:
DALI, BACnet, LONtalk, KNX, Zigbee Device Objects (ZDO), etc.

Assumed phased introduction of CoAP to building control:
1. Phase 1: CoAP transports legacy standard
2. Phase 2: CoAP transports building control naming standard

Phase 1 example

CoAP message Confirmable
DALI command: pT method Unpack message

Switch on - . S DALI invoked
Mime type: /application/DALI Light switched on

DALI Switch on

78th IETF meeting July 28, 2010 Peter van der Stok 73

Size of uri

Authority of URI is resolved to single a unicast or multicast address, plus
port.

Path specifies resource: standard dependent (e.g. single 16 bit value)

78th IETF meeting July 28, 2010 Peter van der Stok 74

*

O
]

Battery-less device

Battery less node sends at (ir)regular intervals, and sleeps
actuator node is always on and receives

controller node, is always on, receives and redistributes

From battery-less:
Non confirmable
Put

Multicast scope

78th IETF meeting July 28, 2010 Peter van der Stok

75

Multicast specification

Scope defined by group (hierarchical building structure)

Specification:
« Validity
* Integrity
« Agreement
* Timeliness
 Ordering?

78th IETF meeting July 28, 2010 Peter van der Stok

