
Abstract Encoding for
Congestion Exposure

Matt Mathis
ConEx WG, IETF 78

We already have a morass

Major source of complexity is encoding
Encoding issues often obscure algorithm issues
Encoding issues bury the simplicity of the ideal
Assumptions about encoding color our thinking

We need to simplify

Do the base algorithm design without encoding
Understand and inventory potential capabilities

Can include variants of the algorithms
Design encoding as a separate step

Choose code points to conflate
Can (computationally?) validate:

Preserved v lost capabilities
Effects of known bugs

Remapping codepoints
Effects of partial deployment

Congestion Exposure assumptions

Must support both:
ECN based RE-Feedback
Loss based RE-Feedback

Transport protocol does not have to be TCP
If I say TCP I really mean transport

Model Assumptions

Data flow model
Discreet functional building blocks
Connected by common signals
Complete algorithms built out of assembled blocks

All signals include explicit "not supported" indication
Don't constrain deployment scenarios

Notation for variants of building blocks:
 BASENAME.varient

Basic signals & functional units

LOSS - Network bottleneck to transport receiver
Default implicit congestion signal

SACK - Transport receiver to sender loss indications
Also include duplicate ACKs

BLACK.loss - Transport sender to all path elements
Exposes retransmissions to the entire path

ECN - Network bottleneck to Transport receiver
Defined by RFC 3581

ECE - Transport receiver to Transport sender
Counter carried by transport

BLACK.ece - Transport sender to all path elements
Exposes ECN marks to the entire path

GREEN - Transport sender to all path elements
Pre credits to facilitate strong enforcement

Basic signals and functional units

LOSS

Congestion signal Network -> Transport receiver
Implicit, default congestion indication

May use Random Early Detection (LOSS.red)
Or drop tail (LOSS.tail)
Or something else (LOSS.magic)

SACK (dupACKs)

Loss information from Transport receiver->sender
also include dupACK
and any other returned loss signals

Required part of all reliable protocols
Required to implement congestion control

 BLACK.loss

Transport sender -> entire path
Carries RE-echo'd SACK/loss info

Also called credit marks
Indicates the total lossed over the entire path

(Out-of-scope: mental model
Mark all retransmissions such that the network

Can instrument (count)
Can (test) implementing policy

)

ECN: Explicit Congest. Notification

Network element -> transport receiver
Indicates congestion
Sometime called Negative, Debit or RED marks
The detected congestion is always upstream

ECN.3168 defined exactly per RFC 3168
This fully constrains the encoding

May consider slightly revising 3168
CAUTION greatly raises deployment cost

e.g. use different drop probability than losses
e.g. redefine one of the ECT code points
All others are probably non-starters

But should not be forbidden outright

ECE: ECN Echo

Transport receiver -> transport sender
Carries ECN info back to the sender

ECE.3168 is not really strong enough
Only permits one event (signal) per RTT

Single bit is also too weak
Sparse ACKs may not be able to carry enough
ACKs might get lost

More likely implementation:
Small ECN counter carried in retuning ACKs
Sender can count counter advances
Robust to lost ACKs and ACK thinning

Up to a point

BLACK.ECN

Transport sender -> entire path
RE-echo'd ECN info by way of ECE

Also called credit
Indicates the total ECN marks to the entire path

But delayed by one RTT

GREEN

Transport sender -> entire path
Similar semantics to BLACK.* aka Credit marks
Pre-credits to offset 1 RTT delay in BLACK marks

GREEN.maxflight
Mark every packet that raises MAX(in_flight)

Assures that GREEN.maxflight+BLACK.ECN-ECN >0
For every hop, for all time
Strong cheat detection when implemented close to the
receiver

Basic signals and functional units

Useful (mid path) observations

Can compute total congestion for the entire path
BLACK.Loss + BLACK.ECN

Can compute total upstream congestion
LOSS (reconstructed state machine) + ECN

Can compute down stream congestion
BLACK.Loss - LOSS (reconstruct state machine)

Same as # late duplicate packets
e.g. you see both first and retransmit
This test is very robust

BLACK.ECN - ECN

The encoding problem

Without any collapsing need 3x3x3x3 code points
States: {Unsupported, Off, On}
Signals: {ECN, BLACK.ECN, BLACK.Loss, GREEN}

Key issue is eliminating redundant "unsupported"
Simple model:

3 CP to handle ECN
5 CP to handle BLACK* and GREEN

All share the same "unsupported"
One no credit CP
Once CP for each credit

Can't represent combined credits
Independent "supported" for ECN and RE-echo
Still too many bits for IPV4

Further conflating possible

Useful deployment observations

Can make Loss and ECN based systems independent
Loss based RE-echo may be easy to deploy

Just set a "retransmitted" flag in IP layer
Tiny patch to existing stacks
Auditing cheaters requires reconstructing TCP

And may be fragile
But good enough to study and validate uses:

Instrumentation
Policy, etc

But what bit? (OFF TOPIC)

Conclusion

Separate core algorithm design from coding design
Core algorithms are really simple
Encoding adds huge complexity

Tweaking algorithms after encoding hurts
Think combinatoric spaghetti

Better model:
Tweak base algorithms
(re)apply encoding

(more, but out of scope)

What bit/CP to tag retransmitted?

Bit 48 one obvious choice
But huge political baggage

What about redefining ECT(1) as BLACK.Loss?
If ECN enabled

Send only ECT(0) for ECN enabled
Will (rarely) overwrite BLACK.Loss with ECN

Only congestion from different bottleneck
If ECN disabled

Normally send Not-ECT
BLACK.Loss looks enabled so ECN might be lost

But TCP is already in recovery, so don't care
Best part:

Hard code (crossing TCP/IP layers) is done!

