Abstract Encoding for

Congestion Exposure

Matt Mathis
ConExX WG, IETF 78

We already have a morass

e Major source of complexity is encoding

e Encoding issues often obscure algorithm issues
e Encoding issues bury the simplicity of the ideal
e Assumptions about encoding color our thinking

We need to simplify

e Do the base algorithm design without encoding
o Understand and inventory potential capabilities
m Can include variants of the algorithms
e Design encoding as a separate step
o Choose code points to conflate
o Can (computationally?) validate:
m Preserved v lost capabilities
m Effects of known bugs
m Remapping codepoints
m Effects of partial deployment

Congestion Exposure assumptions

e Must support both:
o ECN based RE-Feedback
o Loss based RE-Feedback
e Transport protocol does not have to be TCP
o If | say TCP | really mean transport

Model Assumptions

e Data flow model
o Discreet functional building blocks
o Connected by common signals
o Complete algorithms built out of assembled blocks
e All signals include explicit "not supported” indication
o Don't constrain deployment scenarios
e Notation for variants of building blocks:
BASENAME.varient

Basic signals & functional units

e LOSS - Network bottleneck to transport receiver
o Default implicit congestion signal

e SACK - Transport receiver to sender loss indications
o Also include duplicate ACKs

e BLACK.loss - Transport sender to all path elements
o Exposes retransmissions to the entire path

e ECN - Network bottleneck to Transport receiver
o Defined by RFC 3581

e ECE - Transport receiver to Transport sender
o Counter carried by transport

e BLACK.ece - Transport sender to all path elements
o Exposes ECN marks to the entire path

e GREEN - Transport sender to all path elements
o Pre credits to facilitate strong enforcement

Basic signhals and functional units

’ N Congested
Network [N
Téaenns dpeorrt Element Tranport
. . Recelver
Pc#:y eon Policy
Loss \
/1”1 | BLACKECN
I ‘ ’ BLACK.loss
SACK S
ECE
. y, ____

LOSS

e Congestion signal Network -> Transport receiver
o Implicit, default congestion indication
e May use Random Early Detection (LOSS.red)

o Or drop tail (LOSS.tail)
o Or something else (LOSS.magic)

SACK (dupACKs)

e Loss information from Transport receiver->sender
o also include dupACK
o and any other returned loss signals

e Required part of all reliable protocols

e Required to implement congestion control

BLACK.loss

e Transport sender -> entire path
o Carries RE-echo'd SACK/loss info
e Also called credit marks
e Indicates the total lossed over the entire path

(Out-of-scope: mental model
o Mark all retransmissions such that the network
m Can instrument (count)
m Can (test) implementing policy

ECN: Explicit Congest. Notification

e Network element -> transport receiver
o Indicates congestion
o Sometime called Negative, Debit or RED marks
o The detected congestion is always upstream
e ECN.3168 defined exactly per RFC 3168
o This fully constrains the encoding
e May consider slightly revising 3168
o CAUTION greatly raises deployment cost
m €.g. use different drop probability than losses
m €.g. redefine one of the ECT code points
m All others are probably non-starters
m But should not be forbidden outright

ECE: ECN Echo

e Transport receiver -> transport sender
o Carries ECN info back to the sender
e ECE.3168 is not really strong enough
o Only permits one event (signal) per RTT
e Single bit is also too weak
o Sparse ACKs may not be able to carry enough
o ACKs might get lost
e More likely implementation:
o Small ECN counter carried in retuning ACKs
o Sender can count counter advances
o Robust to lost ACKs and ACK thinning
m Up to a point

BLACK.ECN

e Transport sender -> entire path
o RE-echo'd ECN info by way of ECE

e Also called credit

e Indicates the total ECN marks to the entire path
o But delayed by one RTT

GREEN

e Transport sender -> entire path
o Similar semantics to BLACK.* aka Credit marks
o Pre-credits to offset 1 RTT delay in BLACK marks
e GREEN.maxflight
o Mark every packet that raises MAX(in_flight)
e Assures that GREEN.maxflight+BLACK.ECN-ECN >0
o For every hop, for all time
o Strong cheat detection when implemented close to the
receiver

Basic signhals and functional units

’ N Congested
Network [N
Téaenns dpeorrt Element Tranport
. . Recelver
Pc#:y eon Policy
Loss \
/1”1 | BLACKECN
I ‘ ’ BLACK.loss
SACK S
ECE
. y, ____

Useful (mid path) observations

e Can compute total congestion for the entire path
o BLACK.Loss + BLACK.ECN
e Can compute total upstream congestion
o LOSS (reconstructed state machine) + ECN
e Can compute down stream congestion
o BLACK.Loss - LOSS (reconstruct state machine)
m Same as # late duplicate packets
m €.g. you see both first and retransmit
m [his test is very robust
o BLACK.ECN - ECN

The encoding problem

e Without any collapsing need 3x3x3x3 code points
o States: {Unsupported, Off, On}
o Signals: {ECN, BLACK.ECN, BLACK.Loss, GREEN}
e Key issue is eliminating redundant "unsupported”
o Simple model:
m 3 CP to handle ECN
m 5 CP to handle BLACK* and GREEN
m All share the same "unsupported”
m One no credit CP
m Once CP for each credit
m Can't represent combined credits
m Independent "supported” for ECN and RE-echo
m Still too many bits for IPV4
m Further conflating possible

Useful deployment observations

e Can make Loss and ECN based systems independent
e Loss based RE-echo may be easy to deploy
o Just set a "retransmitted” flag in IP layer
m Tiny patch to existing stacks
m Auditing cheaters requires reconstructing TCP
m And may be fragile
m But good enough to study and validate uses:
m Instrumentation
m Policy, efc
o But what bit? (OFF TOPIC)

Conclusion

e Separate core algorithm design from coding design

o Core algorithms are really simple
o Encoding adds huge complexity

m Tweaking algorithms after encoding hurts

m Think combinatoric spaghetti

o Better model:

m [weak base algorithms

m (re)apply encoding

(more, but out of scope)

What bit/CP to tag retransmitted?

e Bit 48 one obvious choice
o But huge political baggage
e \What about redefining ECT(1) as BLACK.Loss?
o If ECN enabled
m Send only ECT(0) for ECN enabled
m Will (rarely) overwrite BLACK.Loss with ECN
m Only congestion from different bottleneck
o If ECN disabled
m Normally send Not-ECT
m BLACK.Loss looks enabled so ECN might be lost
m But TCP is already in recovery, so don't care
o Best part:
m Hard code (crossing TCP/IP layers) is done!

