

Network Virtualization – Results and Challenges

Roland Bless and Martin Röhricht

Institute of Telematics, Department of Computer Science

Network Virtualization – 4WARD Results

- Created an architectural framework for network virtualization in a commercial setting
- Maybe use terminology or framework as starting points?
 - different "provider" roles InP, VNP, VNO
 - various management and control interfaces

Exemplary Solution – Virtual Link Setup

- Creation of virtual links with QoS guarantees between virtual nodes
 - Virtual nodes possibly part of different InP domains
 - Setup of virtual nodes via management interface
- Necessary information to setup virtual links
 - Substrate address of each virtual node
 - Tunnel type to be used, e.g. L2 tunnel, IP in IP, GRE, ...
 - VNet-IDs, VNode-IDs, virtual interface names
 - Desired QoS parameters for the virtual link
- Use the Next Steps in Signaling Framework as signaling solution
- Don't create entirely new signaling application (NSLP)
 - Extended QoS NSLP with dedicated VLSP object
 - QoS has to be used anyway for virtual links with guarantees
 - required only few additional lines of source code http://nsis-ka.org/

Lessons learned / Open Issues

- Lessons learned
 - need a comprehensive virtual network topology description, e.g. XMLbased
 - need to define inter-domain/cross-provider interfaces
 - hard, but important to get right
 - security must be built-in (e.g., isolation of VNets and authorized access to control)
- More work required on
 - signaling and control
 - end-user attachment
 - virtual nodes including virtual storage