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Time Line
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Implementations

C++: Linden Lab
C#: OpenMetaverse
Haskell: Linden Lab
Java: Linden Lab, University of St. Andrews
JavaScript: Linden Lab
Perl: Linden Lab
PHP: Linden Lab, SignpostMarv
Python: Linden Lab
Ruby: Linden Lab
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Usage

Code:

9% of modules in LL main codebase use LLSD

(~8k modules, ~3M lines of code)
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Usage

Counts:

253k log messages / minute
daily peak (notation)

9.7M objects created / day
(XML)
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Usage

Data Volume:

6.4 TiB / day for 2M teleports
average of 3.3MiB each (binary)

big LLSD!

55.7 TiB / day for 749k simulation checkpoints
gzip’d to 42% of original (XML)
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Pain Points

Content Negotiation

Unicode Strings vs. XML

Mixing LLSD and non-LLSD

Documentation

Validation

Big data sets
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Issues
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Types: Date Range

The range of dates is currently bounded:

“Data of type Date may have the value of 
any time in the from January 1, 1970 though 
at least January 1, 2038, to at least second 
accuracy.”

Is this a worry?
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Encoding: JSON Subtlety

1) RFC 4627 vs. ECMA-262

2) RFC 4627’s JSON-text vs.
 ECMA-262’s JSONvalue

3) String literals are escaped UTF-16, not Unicode!

U+1D11E (𝄞) is encoded in JSON as:

"\ud834\udd1e"
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Encoding: XML Base64

1) The encoding attribute is defaulted to base64,
 it is not #REQUIRED

2) Which alphabet?
 RFC 4648 § 4. Base 64 Encoding

3) Linebreaking, Padding and Non-Alphabet
 RFC 4648 § 3. Implementation Discrepancies
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LLIDL: REST vs. HTTP

1) Clear community dislike of binding to HTTP

2) Agreement on focus on REST semantics

3) Which REST like operations do we support?

Operational POST <- ->
Readable GET <<
Read/Write GET/PUT <>
Read/Write/Deletable GET/PUT/DELETE <x>
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LLIDL: Events

An event, as cast into REST, would be like a request 
with no response.

This does seem to map onto the communication needs 
of VWRAP.

Do we add this? Perhaps:

Event POST? >>
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LLIDL: Semantics of Matching

LLIDL describes shapes
LLSD describes defaulting and conversion

What constitutes conformance of an LLSD value to an 
LLIDL description?
One approach:

match(actual) -- matches structurally and all conversions are 
valid (non-defaulted)

valid(actual) -- matches structurally though defaulted or 
additional data is acceptable

has_additional(actual) -- has additional data
has_defaulted(actual) -- has defaulted data
incompatible(actual) -- the value is incompatible
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LLIDL: Stand Alone Values

There a need to be able to reference (and check 
conformance) for individual values.

The named type facility serves this purpose for now.
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LLIDL: Path Arguments

Astute readers will have noticed the addition of query 
argument specifications to LLIDL (the ?? syntax).

While not strictly part of the current VWRAP usage, 
internally the need for specifying the query arguments 
to a resource was pressing.

The need for path arguments is similar, though at 
present, LLIDL doesn’t consider the URL to access a 
resource.
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Additions:

Minor nit: “Capability Host”

Minor nit: Resource Base URI

Medium issue: Required Serialization Formats
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Issues
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Seed Capability Format

In draft:
   %% seed
   -> { capabilities: [ string, ... ] }
   <- { capabilities: { $: uri } }

But should it be?
   %% seed
   -> { capabilities: [ string, ... ] }
   <- { capabilities: [ &cap, ...]
   &cap = { name: string, loc: uri }
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Event Queues

1) Are events to be handled differently than other 
resource types?

2) How should server invoked resources be 
implemented?

3) Is the current long-poll queue mechanism good 
enough for now?
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Capability Host

The “capability host” is responsible for both granting 
and proxying

Should split out into two:
 “granting host”
 “proxying host”
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Resource Name Base URI

Currently:
http://xmlns.secondlife.com/capability/name

Propose something like:
urn:vwrap:res:
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Serialization

Currently “XML and JSON ... MUST be supported”

Is there a point to forcing everyone to do both?

We could put the burden on:
 just providers?
 just consumers?

How does that work in our more symmetric world?
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