
VWRAP Type System
Experience & Issues

March 2010

Mark Lentczner / “Zero Linden”

Tuesday, March 23, 2010

Experience Report

Tuesday, March 23, 2010

Time Line

2005 2006 2007 2008 2009 2010

In
itia

l D
es

ig
n

&
Im

pl
.

Bi
na

ry
 &

 N
ot

at
io

n
Se

r.
2n

d
De

sig
n

&
Im

pl
.

XM
L S

er
ia

liz
at

io
n

Us
e

in
 m

es
sa

ge
 sy

ste
m

Ba
sis

 fo
r O

G
P

dr
af

ts
Fir

st
ID

 (I
ET

F
75

)

Tuesday, March 23, 2010

Implementations

C++: Linden Lab
C#: OpenMetaverse
Haskell: Linden Lab
Java: Linden Lab, University of St. Andrews
JavaScript: Linden Lab
Perl: Linden Lab
PHP: Linden Lab, SignpostMarv
Python: Linden Lab
Ruby: Linden Lab

Tuesday, March 23, 2010

Usage

Code:

9% of modules in LL main codebase use LLSD

(~8k modules, ~3M lines of code)

Tuesday, March 23, 2010

Usage

Counts:

253k log messages / minute
daily peak (notation)

9.7M objects created / day
(XML)

Tuesday, March 23, 2010

Usage

Data Volume:

6.4 TiB / day for 2M teleports
average of 3.3MiB each (binary)

big LLSD!

55.7 TiB / day for 749k simulation checkpoints
gzip’d to 42% of original (XML)

Tuesday, March 23, 2010

Pain Points

Content Negotiation

Unicode Strings vs. XML

Mixing LLSD and non-LLSD

Documentation

Validation

Big data sets

Tuesday, March 23, 2010

Issues

Tuesday, March 23, 2010

Types: Date Range

The range of dates is currently bounded:

“Data of type Date may have the value of
any time in the from January 1, 1970 though
at least January 1, 2038, to at least second
accuracy.”

Is this a worry?

Tuesday, March 23, 2010

Encoding: JSON Subtlety

1) RFC 4627 vs. ECMA-262

2) RFC 4627’s JSON-text vs.
 ECMA-262’s JSONvalue

3) String literals are escaped UTF-16, not Unicode!

U+1D11E (𝄞) is encoded in JSON as:

"\ud834\udd1e"

Tuesday, March 23, 2010

Encoding: XML Base64

1) The encoding attribute is defaulted to base64,
 it is not #REQUIRED

2) Which alphabet?
 RFC 4648 § 4. Base 64 Encoding

3) Linebreaking, Padding and Non-Alphabet
 RFC 4648 § 3. Implementation Discrepancies

Tuesday, March 23, 2010

LLIDL: REST vs. HTTP

1) Clear community dislike of binding to HTTP

2) Agreement on focus on REST semantics

3) Which REST like operations do we support?

Operational POST <- ->
Readable GET <<
Read/Write GET/PUT <>
Read/Write/Deletable GET/PUT/DELETE <x>

Tuesday, March 23, 2010

LLIDL: Events

An event, as cast into REST, would be like a request
with no response.

This does seem to map onto the communication needs
of VWRAP.

Do we add this? Perhaps:

Event POST? >>

Tuesday, March 23, 2010

LLIDL: Semantics of Matching

LLIDL describes shapes
LLSD describes defaulting and conversion

What constitutes conformance of an LLSD value to an
LLIDL description?
One approach:

match(actual) -- matches structurally and all conversions are
valid (non-defaulted)

valid(actual) -- matches structurally though defaulted or
additional data is acceptable

has_additional(actual) -- has additional data
has_defaulted(actual) -- has defaulted data
incompatible(actual) -- the value is incompatible

Tuesday, March 23, 2010

LLIDL: Stand Alone Values

There a need to be able to reference (and check
conformance) for individual values.

The named type facility serves this purpose for now.

Tuesday, March 23, 2010

LLIDL: Path Arguments

Astute readers will have noticed the addition of query
argument specifications to LLIDL (the ?? syntax).

While not strictly part of the current VWRAP usage,
internally the need for specifying the query arguments
to a resource was pressing.

The need for path arguments is similar, though at
present, LLIDL doesn’t consider the URL to access a
resource.

Tuesday, March 23, 2010

VWRAP Foundation
Issues

March 2010

Mark Lentczner / “Zero Linden”

Tuesday, March 23, 2010

Additions:

Minor nit: “Capability Host”

Minor nit: Resource Base URI

Medium issue: Required Serialization Formats

Tuesday, March 23, 2010

Issues

Tuesday, March 23, 2010

Seed Capability Format

In draft:
 %% seed
 -> { capabilities: [string, ...] }
 <- { capabilities: { $: uri } }

But should it be?
 %% seed
 -> { capabilities: [string, ...] }
 <- { capabilities: [&cap, ...]
 &cap = { name: string, loc: uri }

Tuesday, March 23, 2010

Event Queues

1) Are events to be handled differently than other
resource types?

2) How should server invoked resources be
implemented?

3) Is the current long-poll queue mechanism good
enough for now?

Tuesday, March 23, 2010

Capability Host

The “capability host” is responsible for both granting
and proxying

Should split out into two:
 “granting host”
 “proxying host”

Tuesday, March 23, 2010

Resource Name Base URI

Currently:
http://xmlns.secondlife.com/capability/name

Propose something like:
urn:vwrap:res:

Tuesday, March 23, 2010

http://xmlns.secondlife.com/capability/name
http://xmlns.secondlife.com/capability/name

Serialization

Currently “XML and JSON ... MUST be supported”

Is there a point to forcing everyone to do both?

We could put the burden on:
 just providers?
 just consumers?

How does that work in our more symmetric world?

Tuesday, March 23, 2010

