
How Big (or How Small)
Should (or Might) NFSv4

Minor Versions Be?
Exploring the Constraints

David Noveck
IETF 77

March 23, 2010

Introduction

•  Purposes
–  Exploring the issues, technical and otherwise, with the

size of minor versions
–  In particular, thinking about very small minor versions
–  Exploring the document structure for

“normal” (whether big or small) minor versions.
–  Stimulating group discussion

•  Non-purposes:
–  Coming to any immediate conclusion on these issues

Normal (?) Minor Versions
•  What things make a minor version non-normal?

–  Initiating the protocol as whole, or,
–  Violating any of the minor version rules

•  Containing mandatory new features
•  Making things mandatory-to-not-implement immediately

•  So, using this definition
–  v4.0 and v4.1 are not normal minor versions
–  v4.2 is the first normal minor version

•  We should think carefully about the issues
•  We don’t have precedents to go by
•  We will be establishing precedents (due to inertia rather than

stare decisis)
–  Expect most new minor versions to be “normal”

Constraints Taken for Granted

•  No more non-normal minor versions
– At least for quite a while

•  No more 600+ page documents
•  No more versions that take about 700

pages to describe (RFCs 5661 & 5662)
•  No more versions as big as v4.1

– Even if they have smaller documents due to a
different document strategy

Defining the Maximum
•  Can’t use pages, affected by doc. strategy
•  Let’s look at big changes and guess at size
•  In v4.1:

–  Sessions (including trunking) [2.0]
–  pNFS (including file layout type) [2.0]
–  Directory delegation [1.0]
–  Multi-server namespace (+new attributes) [1.0]
–  New compliance attributes [0.2]
–  New stateid stuff [0.3]

•  Group should have some sense of rough
maximum [2.5]? [3.0]? [3.5]?

What About a Minimum?

•  How small can/should a minor version be?
•  Smallest would be to correct omissions

–  “How could we have forgotten …”
– But it isn’t an erratum

•  Without arguing about whether this is an
example, consider commit level
– Why can’t WRITE tell you that you don’t need

a LAYOUTCOMMIT?
– Duh. Because we forgot to add it to the enum

When Would a v4.x be too Small?

•  Issues of overhead
–  Document writing (depends on doc. strategy)
–  Group last call
–  IETF last call
–  RFC editor
–  Non-trivial. WG needs to compare to benefits

•  What isn’t a big issue for small versions
–  Overhead of writing a client (as for v4.1)
–  A small v4.2 is more like a v4.1.1

•  A v4.1 client that accepts 2 in the version field conforms
•  Then the issue is implementing a small feature

Some Models for Minor Versions

•  Three models discussed below
– Marquee Feature Model
– Timed Model
– Maintenance Model

•  Not mutually exclusive
– Working group can adopt one or more than

one

Marquee Feature Model

•  Requires one or more marquee features
– Big enough to generate interest

•  Version ready when marquee feature(s)
are ready
– Plus whatever else is ready at the time

•  Should be able to credibly defer things not quite
ready

– Most similar to v4.1
•  Although we weren’t really prepared to drop things

Timed Version Model

•  Decide on a minor version cadence
– Attempt to stick to it
– Can modify it, if it is too fast or slow
– But generally not for individual features

•  Allows people to plan
–  If a feature take longer than expected, it is

deferred
– Other features are not held up

•  Client implementations can also plan

Maintenance Version Model

•  To correct generally recognized omissions or
mistakes
–  Which aren’t errata. Not editing mistakes.
–  Will be dispute about how important the issue is, but

not about the fact that wrong choice was made.
•  If there is rough consensus,

–  Group creates a small minor version, for that/those
alone

–  Up to group but other sorts of things add risk, even if
they seem generally OK/ready

Document Strategy

•  Avoid big documents
–  One approach is to just document delta between v4.x

and v4.x+1 in single v4.x+1 RFC

•  Problems:
–  Gets unwieldy when x > 3

•  Each document may modify others
•  Don’t know where to go for the truth about v4.x
•  No XDR file for v4.x

–  X > 3 may happen quickly if maintenance versions
•  Can reissue big RFC’s every so often, or …

Alternate Document Strategy

•  Here is an alternate document strategy
•  Definitely a first pass
•  Appreciate working group comments
•  Divides documentation up:

– Feature documents (become RFC’s)
– Version documents (also become RFC’s)

•  Done very late in process

Feature RFC’s
•  Documents features in feature RFC’s, not the version

RFC
–  Makes it easier to split up work appropriately
–  Makes it easier to put off decision on what is ready until that

decision is necessary
•  Consists of:

–  New sections explaining new feature
–  Descriptive sections for new ops (same format as RFC 5661)
–  Changed versions of sections from RFC5661 and earlier feature

RFCs.
–  To avoid delta scanning nightmare, require full section changes:

•  If you change section a.b feature RFC has a new version, not
“section a.b is the same except except for … and …”

•  In particular, if you change an operation, you have a revised version
of that operation in feature RFC

Version RFC’s
•  Contains:

–  Full XDR for minor version
•  Implicitly contain XDR for all versions
•  Uses “#if MINOR_VERSION > n”
•  Can programmatically check for compatibility

–  Updated OP-vs.-error tables to reflect
•  New ops, ops becoming mandatory, deprecated, mandatory-

to-not-implement
–  Version document index

•  For each a.b-level section, including op and cb definitions
–  Specifies where correct (i.e. latest) version is to be found

»  RFC 5661
»  Feature RFC for this version
»  Feature RFC for previous version

Can Write Validation Tools
•  Check that the XDR source processed with

-DMINOR_VDRSION=n matches XDR for minor
version n.

•  Report on the differences in error table with
regard to existing ops

•  That all major sections of feature RFCs are
referenced as the most current version of
something in the index.

•  Report on diffs when new section replaces old
•  Should reduce the gap between decision on

contents and the version document last-call

Should be Able to

•  Have scripts which scan index and with
other RFCs, produce:
– An explanation RFC-style document, like first

half of RFC5661
– An ob/cb RFC-style document with ops listed

either in numeric or alphabetical order
•  Should be able to create a web site to

produce minor version documents or html
drafts when you type in the version
number.

If we have time

•  Questions
•  Comments
•  In any case, discussion needed on

working group list

