BFD for 1 + 1 protection schemes with point 2 point adjacencies: post-MPLS_WC meeting

David Ward March 2010

Unidirectional LSP solution space

Unidirectional LSP solution

- Use BFD for unidirectional LSPs with no or minimal change
 - draft-ietf-bfd-mpls (will you allow it by config as well?)
- 4 sessions: 1 for each of the 1 + 1 links (rx and tx)

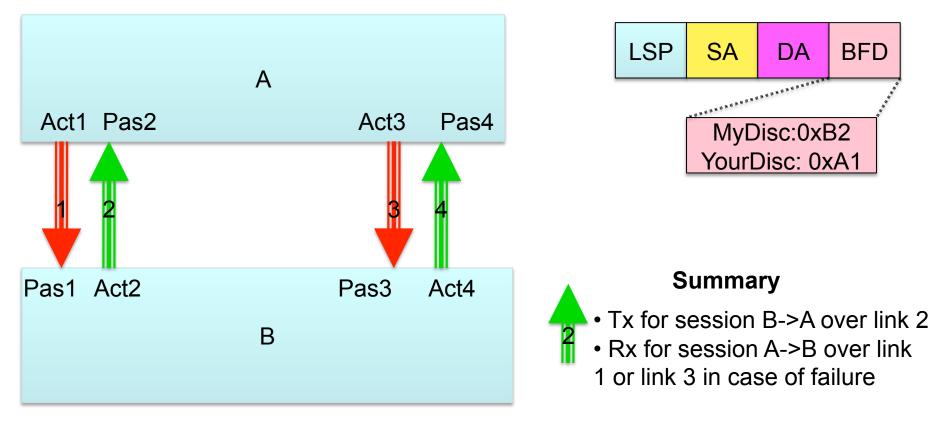
•Each session is responsible for monitoring the live-ness of one unidirectional link

The multi-hop "control response" channel should be over corresponding return path but, in a failure situation; the "control response" channel would come over paired path

Pros:

•Enables slow start easily

•Enables ability to transmit diags


•Completely BW compat and widely deployed

Technique works in all MPLS environments

Cons:

requires at least one return path to restart a BFD session

Unidirectional LSP solution space

• BFD control packets are encapsulated in the MPLS label stack that corresponds to the FEC under fault detection.

- Egress LSR is single hop from BFD perspective, TTL is set to 1.
- Egress LSR routes BFD packet based on the destination IP address.

Multipoint BFD overview and solution space

Multipoint BFD Overview

- Verifies connectivity of head->tail multipoint path
- Technology independent (IP mcast, MPLS P2MP, etc.)
- Does not verify tail->head return path
- Does not verify unicast head->tail path
- Optional notification to head of tail status
- Protocol timing/scalability driven entirely from head
- Runs next to Classic Unicast BFD
- Falls out of existing Unicast BFD spec (pretty much)

Original MP Service Definition

- Base function plus a number of options
- Options may be enabled in any combination
- Base function: Unidirectional Transmission
 - Head sends periodic packets along MP tree
 - based on the discriminator distributed and specific to the head
 - Tails detect BFD timeout, do "the right thing" (e.g. listen to another head)
 - Head ignorant of tails, no BFD packets sent to head
 - Simple, extremely scalable

- Option: Solicit Membership
 - Head sets Poll bit in MP transmission
 - Tails send unicast Final in reply
 - Tail transmission smeared across time specified by head
 - Head gets a Pretty Good idea of tails listening (unreliable)

- Option: Tails notify head of session failure
 - Head directs tails to send periodic packets to head when tail detects session failure
 - Upon session failure, tail sends bfd.DetectMult packets (smeared across time) and then quiesces
 - Semi-reliable (multiple packets are sent)

- Option: Verify Connectivity of Specific Tail
 - Head sends unicast Poll Sequence to specific tail (learned by solicitation or outside means)
 - Tail replies with Final (and without smear, so it's quick)
 - Head reliably learns tail state (if tail ever replies)

- Option: Some Tails are More Equal Than Others
 - Side effect of unicast Poll Sequence is that intervals carried therein override multipoint values
 - Head can thus raise transmission rate of individual tails for failure notification

- Option: Silent Tails
 - Tails may be provisioned to never reply to BFD even when head sends Polls
 - Allows for large numbers of second-class citizens in class-conscious tail population

Session Types

- Operation modeled as distinct session types:
 - PointToPoint: Classic BFD
 - MultipointHead: Session on head sending multipoint packets
 - MultipointClient: Optional session on head tracking individual tail
 - MultipointTail: Session on tail tracking head

Demultiplexing

- Multipoint (M) bit flags multipoint packets
- Packet demuxing rules select session
- Session type determines elements of procedure

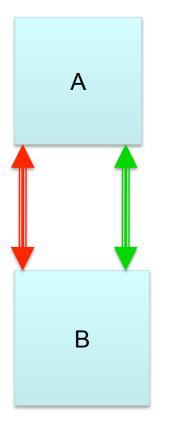
Protocol Tricks and Hackery

- Multipoint packets all sent with Demand (D) bit set, tails cannot send periodic packets while session is up
- Required Min RX value set to zero means "no periodic transmission ever" (controls failure notification)
- Silent Tail = 1 means "no transmission ever" (no reply to polls)

Environmental Assumptions

 Tail needs to be able to differentiate between packets received on different MP trees if same head is going to be heard from on multiple trees

- Via discriminators specific to the head


Head is identified by source address (which cannot change)

Solution overview

- In 1 +1 environment create 4 independent sessions: Head end (tx) driven
 - No fundamental savings
- Enables receiver to have CC/CV independent of bidirectional connectivity
- If use any functionality of options 1-4 then it is directly analogous to BFD for LSP solution though return control not required continuously

NOTE: Need to make changes to enable slow start

Summary for MP for P2P links

Two MP sessions over p2p links One from A to B Another (separate) from B to A Options: Use 'option 5' Set D bit Set rx trans to 0 or make silent tail

Summary

- Existing MPLS-BFD is the choice that requires no extensions or modifications if any return path exists
 - Gives full functionality of slow start and messaging of tail to head
- Case for MP functionality over P2P links is a small, corner case of P2P functionality
 - No return path
 - Functionality of MP option 5 and any other functionality is never required
 - Slow start without return path requires modifications
- Recommendation: use MPLS-BFD procedures