LEDBAT architecture framework consisting of pluggable components

draft-may utan-led bat-congestion architecture-00.txt

Mayutan Arumaithurai, Xiaoming Fu, K.K Ramakrishnan

March 23, 2010

M. Arumaithurai, X. Fu, K.K. Ramakrishnan

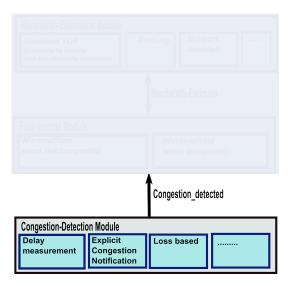


Figure: Architecture consisting of pluggable components

(日) (四) (E) (E) (E) (E)

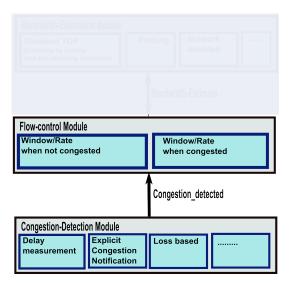


Figure: Architecture consisting of pluggable components

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

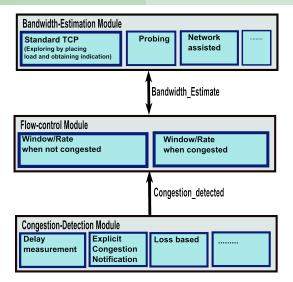


Figure: Architecture consisting of pluggable components

=> Each module operates in a different timescale

M. Arumaithurai, X. Fu, K.K. Ramakrishnan

ICCRG

Congestion Detection Module

- Delay Based
 - $\bullet~+$ Does not require network support
 - Sensitive to variation in routes, bottleneck buffer size, bursty traffic etc.
- Loss based
 - $\bullet \ + \ {\sf Reliable \ indicator \ of \ congestion}$
 - $\bullet~-$ Results in substantial interference to TCP
- ECN marking based
 - \bullet + Good and early indicator of the onset of congestion
 - - Requires network support
- Delay + Loss/marking based

Congestion Detection Module

- Delay Based
 - $\bullet~+$ Does not require network support
 - - Sensitive to variation in routes, bottleneck buffer size, bursty traffic etc.
- Loss based
 - $\bullet \ + \ {\sf Reliable \ indicator \ of \ congestion}$
 - $\bullet~-$ Results in substantial interference to TCP
- ECN marking based
 - \bullet + Good and early indicator of the onset of congestion
 - Requires network support
- Delay + Loss/marking based

Congestion indicator:

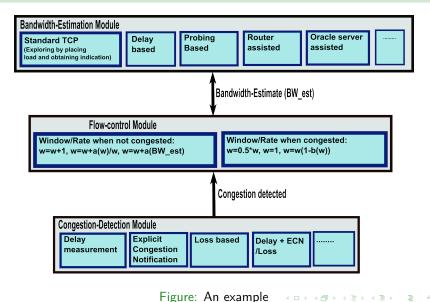
- Binary states: congested or non-congested
- Multiple levels: 0, 0.1, .., 0.5, .., 1

Flow Control Module

- Standard TCP (AIMD)
 - $\bullet\ +$ Robust: Good indication of available capacity
 - \bullet Substantial queuing, thereby delay
 - $\bullet\ -$ Conservative in using available bandwidth
- Variants (Aggressive Increase)
- \bullet + Good for high BDP networks
 - Without bandwidth estimation
 - $\bullet\ -$ Cause interference: No prior knowledge of available bandwidth
 - With Bandwidth Estimation
 - $\bullet \ +$ Separates congestion control from bandwidth estimation
 - $\bullet \ \ {\sf Slower}$
 - - Involves additional overhead

Flow Control Module

- Standard TCP (AIMD)
 - $\bullet\ +$ Robust: Good indication of available capacity
 - \bullet Substantial queuing, thereby delay
 - $\bullet\ -$ Conservative in using available bandwidth
- Variants (Aggressive Increase)
- \bullet + Good for high BDP networks
 - Without bandwidth estimation
 - $\bullet\ -$ Cause interference: No prior knowledge of available bandwidth
 - With Bandwidth Estimation
 - $\bullet \ +$ Separates congestion control from bandwidth estimation
 - $\bullet \ \ {\sf Slower}$
 - - Involves additional overhead


=> Always necessary to have an estimate of available bandwidth

・ 何 ト ・ ヨ ト ・ ヨ

- Standard TCP (increase until loss)
- Delay based (e.g Vegas, Compound TCP)
- Probing based
- Router assisted (e.g. Quick start)
- Support of some oracle server

An example

An example

M. Arumaithurai, X. Fu, K.K. Ramakrishnan

ICCRG

イロト イボト イヨト イヨト

Conclusion

- We could use it as a guideline while standardizing a CC mechanism to keep it flexible.
- Each module and component can be independently standardized
 - Decoupling each module
- Often implicitly followed in current specifications