

Flow Isolation

Matt Mathis
ICCRG at IETF 77

3/23/2010
Anaheim CA

http://staff.psc.edu/mathis/papers
FlowIsolation20100323.{pdf,odp}

=

The origin of “TCP friendly”

 [1997]
 Inspired “TCP Friendly Rate Control”

 [Mahdavi&Floyd '97]
 Defined the language

 Became the IETF dogma

Rate= MSS
RTT 0.7 p

The concept was not at all new

 10 years earlier it had been assumed that:
 Gateways (routers&switches) are simple

 Send the same signals (loss, delay) to all flows
 End-systems are more complicated

 Equivalent response to congestion signals
 Which was defined by Van's TCP (BSD, 1987)
 Pushed BSD as a reference implementation

 This is the Internet's “sharing architecture”

Today TCP Friendly is failing

 Prior to modern stacks
 End-system bottlenecks limited load in the core
 ISPs could out build the load
 No sustained congestion in the core
 Masked weaknesses in the TCP friendly paradigm

 Modern stacks
 May be more than 2 orders of magnitude faster
 Nearly always cause congestion

Old TCP stacks were lame

 Fixed size Receive Socket Buffer
 8kb, 16kB and 32kB are typical

 One buffer of data for each RTT
 250 kB/s or 2 Mb/s on continental scale paths

 Some users were bottlenecked at the access link
 AIMD works well with the large buffer routers

 Other users were bottlenecked by the end-system
 Mostly due to socket buffer sizes

 The core only rarely exercised AIMD

Modern Stacks

 Both sender and receiver side TCP autotuning
 Dynamically adjust socket buffers
 Multiple Mbyte maximum window size

 Every flow with enough data:
 Raises the network RTT and/or
 Raises the loss rate
 e.g. causes some congestion somewhere

 Linux as of 2.6.17 (~Aug 2004)
 Ported from Web100
 Now: Windows 7, Vista, MacOS, *BSD

Problems

 Classic TCP is window fair
 Short RTT flows clobber all others

 Some apps present infinite demand
 ISPs can't out build the load

 TCP's design goal is to cause congestion
 Meaning queues and loss everywhere

 Many things run much faster
 But extremely unpredictable performance
 Some users are much less happy

 See backup slides (Appendix)

Change the assumption

 Network controls the traffic
 Segregate the traffic by flow
 With a separate (virtual) queue for each
 Use a scheduler to allocate capacity
 Don't allow flows to (significantly) interact
 Separate AQM per flow

 Different flows see different congestion

This is not at all new

 Many papers on Fair Queuing&variants
 Entire SIGCOMM sessions

 The killer is the scaling problem associated with
per flow state

Approximate Fair (Dropping)

 Follows from Pan et al CCR April 2003
 Good scaling properties

 Shadow buffer samples forwarded traffic
 On each packet

 Hardware TCAM counts matching packets
 Estimates flow rates

 Estimates virtual queue length
 Very accurate for high rate flows

 Implements rate control and AQM
 Per virtual queue

Flow Isolation

 Flows don't interact with each other
 Only interact w/ scheduler and AQM

 TCP doesn't (can't) determine rate
 TCP's role is simplified

 Just maintain a queue
 Control against AQM
 Details are (mostly) not important

The scheduler allocates capacity

 Should use many inputs
 DSCP codepoint
 Traffic volume

 See: draft-livingood-woundy-congestion-mgmt-
03.txt

 Local congestion volume
 Downstream congestion volume (Re-Feedback)

 Lots of possible ICCRG work here

Cool Properties

 More predictable performance
 Can monitor SLAs

 Instrument scheduler parameters

 Does not depend on CC details
 Aggressive protocols don't hurt

 Natural evolution from current state
 Creeping transport aggressiveness
 ISP defenses against creeping aggressiveness

How aggressive is ok?

 Discarding traffic at line rate is easy
 Need to avoid congestive collapse

 Want goodput=bottleneck BW

 Must consider cascaded bottlenecks
 Don't want traffic that consumes resources at one

bottleneck to be discarded at another
 Sending data without regard to loss is very bad

 But how much loss is ok?

Conjecture

 Average loss rate less than 1 per RTT is ok
 Some RTTs are lossless, so the window fits within

the pipe
 Other RTTs only waste a little bit of upstream

bottlenecks

 Rate goes as 1/p

 NB: higher loss rates may also be ok
 but the argument isn't as simple

Relentless TCP [2009]

 Use packet conservation for window reduction
 Reduce cwnd by the number of losses
 New window matches actual data delivered

 Increase function can be almost anything
 Increases and losses have to balance

 Therefor the increase function directly defines the
control function/model

 Default is standard AI
 Increase by one each RTT)
 Resulting model is 1/p

Properties

 TCP part of control loop has unity gain
 Network drops/signals what it does not want to see

on the next RTT
 e.g. if 1% too fast, drop %1 of the packets

 Greatly simplifies Active Queue Management
 Very well suited for *FQ

 The deployment problem is “only” political
 Crushes networks that don't control their traffic

Closing

 The network needs to control the traffic
 Transport protocols need to be even more

aggressive

Appendix

 Problems cause by new stacks

Problem 1

 TCP is window fair
 Tends to equalize window in packets
 Grossly unfair in terms of data rate
 Short RTT flows are brutally aggressive
 Long RTT flows are vulnerable

 Any flow with a shorter RTT preempts long flows

Example

 2 flows old TCP (32kB buffers)
 100 Mb/s bottleneck link

 Flow 1, 10 ms RTT, expected rate 3 MB/s
 Flow 2, 100 ms RTT, expected rate 0.3 MB/s
 Both: no interaction – they can't fill the link

 Both users see predictable performance

With current stacks

 Auto tuned TCP buffers
 Still 100 Mb/s bottleneck (12.5 MB/s)

 Flow 1, 10 ms RTT, expected rate 12 MB/s
 Flow 2, 100 ms RTT, expected rate 8(?) MB/s
 Both at the same time

 Flow 1, expected rate 10(?) MB/s
 Flow 2, expected rate 1(?) MB/s

 Wide fluctuations in performance!

Problem 2

 Some apps (e.g. p2p) present “infinite” load
 Consider peer-to-peer apps as:

 Distributed shared file system
 Everybody has a manually manged local cache

 As the network gets faster
 Cheaper to fetch on whim and discard carelessly
 Presented load rises with data rate
 Faster network means more wasted data

Problem 3

 TCP's design goal is to fill the network
 By causing a queue at every bottleneck

 Controlling hard against drop tail
 RED (AQM) really hard to get right

 You don't want to share with a non-lame TCP
 Everyone has experienced the symptoms

 TCP friendly is an oxymoron
 Me, at the last IETF

Impact of the new stacks

 Many things run faster
 Higher delay or loss nearly everywhere

 Intermittent congestion in many parts of the core
 Impracticable to out-build the load
 The network needs QoS

 Very unstable or unpredictable TCP
performance
 Vastly increased interactions between flows

The business problem

 Unpredictable performance is a killer
 Unacceptable to users
 Can't write SLAs to assure performance

 A tiny minority of users consume the majority of
the capacity
 Trying to out-build the load can be very expensive
 And may not help anyhow

ISPs need to do something

 But there are no good solutions
 ISP are doing desperate (&misguided) things

 Throttle high volume users or apps to provide cost
effective and predictable performance for small
users

TCP is still lame

 Cwnd (primary control variable) is overloaded
 Many algorithms tweak cwnd

 e.g. burst suppression

 Long term consequences of short term events
 May take 1000s of RTT to recover from

suppressing one burst

 Extremely subtle symptoms
 Not generally recognized by the community

Desired fix

 Replace cwnd by (cwnd+trim) “everywhere”
 Cwnd is reserved for primary congestion control
 Trim is used for all other algorithms

 Signed
 Converges to zero over about one RTT

 Would expect more predictable and better
modeled behavior

A slightly better fix

 trim can be computed implicitly
 It is the error between cwnd and flight_size

 On each ACK:

 trim = flight_size – cwnd
 Existing algorithms update cwnd and/or trim

Even better

 The entire algorithm can be done implicitly

On each ACK compute:
 flight_size = (Estimate of data in the network)

 delivered = (The quantity of data accepted by the receiver)

 (= the change in snd.una, adjusted for SACK blocks)

 willsend = delivered

 If flight_size < cwnd: willsend = willsend + 1

 If flight_size > cwnd: willsend = willsend - ½

 heuristic_adjust(willsend) // Bursts suppression, paceing, etc

 send(willsend, socket_buffer)

Properties

 Strong packet conserving self-clock
 Three orthogonal subsystems

 Congestion control
 Average window size (&data rate)

 Transmission control
 Packet scheduling and burst suppression

 Retransmissions
 Reliable data delivery

Congestion control revisited

 Can use standard AIMD congestion control:

 On loss: cwnd = cwnd/2

 On ACK: cwnd = cwnd + (1/cwnd)

 Expect cleaner behavior than current stacks

 Can trivially use other algorithms
 No collisions with algorithms overloading cwnd
 Unconstrained choices for both increase and

decrease functions
 Huge research opportunities

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

