IPv6 over Low power WPAN WG (6lowpan)

Chairs:

Geoff Mulligan <geoff@mulligan.com> Carsten Bormann <cabo@tzi.org> Mailing List: 6lowpan@ietf.org

Jabber:

6lowpan@jabber.ietf.org

1

- We assume people have read the drafts
- Meetings serve to advance difficult issues by making good use of face-to-face communications
- Be aware of the IPR principles, according to RFC 3979 and its updates

✓ Blue sheets✓ Scribe(s)

Milestones (from WG charter page)

Document submissions to IESG:

- Aug 2008 x 2 Improved Header Compression (PS)
- Aug 2008 // 6 Security Analysis (Info)
- Sep 2008 // 3 Architecture (Info)
- Sep 2008 x 4 Routing Requirements (Info)
- Nov 2008 x 1 Bootstrapping and ND Optimizns (PS)
- Dec 2008 x 5 Use Cases (Info)

Also: running documents for implementers, interop

77th IETF: 6lowpan WG Agenda

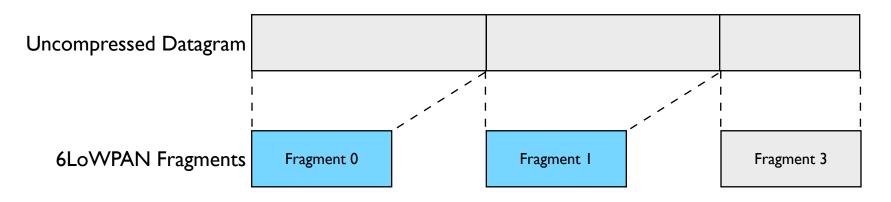
13:00 Introduction, Agenda	Chairs (5)
13:05 2 – HC-06	JH (15)
13:20 1 – ND	
13:20 ND-08	ZS (15)
13:35 ipv6-nd-simple	EN/SC (15)
13:50 Discussion	Chairs (10)
14:00 0 – IEEE 802.15.4 2006	RS (15)
14:15 (1) – DHCP	JH (15)
14:30 Future Work	Chairs (20)

77th IETF: 6lowpan WG Agenda

13:00 Introduction, Agenda	Chairs (5)
13:05 2 – HC-06	JH (15)
13:20 1 – ND	
13:20 ND-08	ZS (15)
13:35 ipv6-nd-simple	EN/SC (15)
13:50 Discussion	Chairs (10)
14:00 0 – IEEE 802.15.4 2006	RS (15)
14:15 (1) – DHCP	JH (15)
14:30 Future Work	Chairs (20)

Compression Format for IPv6 Datagrams in 6LoWPAN Networks

(draft-ietf-6lowpan-hc-06)


Jonathan Hui Pascal Thubert

6LoWPAN WG Meeting 77th IETF Meeting Anaheim, California

Outline

- No updates since Hiroshima
- WGLC comments
 - Lots of editorial feedback
 - Fragmentation
 - Deriving IIDs from IEEE 802.15.4 short addresses
- Next steps

RFC 4944 Fragmentation Problem

- Frag offset/length refer to uncompressed dgram
- When compressed info does not fit in first frag
 - What does dgram_offset mean?
 - Reassembly how does a node know when it's done receiving?
 - Forward compatibility what if a node does not know how to decompress a header?
- Routing headers to deliver datagrams

RFC 4944 Fragmentation Problem

• No changes to RFC 4944 fragment header

- MUST NOT include compressed info in subsequent fragments
- Drop datagram when need to expand a header that is not supported
- Makes explicit what was implicit with RFC 4944
- Changes to RFC 4944
 - Change offset/length to compressed values
 - Create new fragment header

• Consensus on list says "no changes to RFC 4944"

SLAAC with Short Addresses

• 802.15.4 ad<u>dr => Ethernet a</u>ddr => 64-bit IID

• Ethernet A PAN ID 0x00 0x00 ShortAddr

• 64-bit IID: PAN ID 0x00 0xFF 0xFE 0x00 ShortAddr

- IPv6 Addres
 64-bit Prefix
 PAN ID
 0x00
 0xFF
 0xFE
 0x00
 ShortAddr
- Problems
 - 80-bit prefix uniqueness requires link-layer management
 - Collisions when PANIDs differ only in U/L bit
 - IPv6 address change when PAN ID changes

SLAAC with Short Addresses

• Define interface identifier to be 17 bits

- ShortAddr scope is defined by PANID scope (a.k.a. subnet scope)
- Add extra 1-bit to allow for ShortAddr = 0.
- For link-local addresses:

FE80::

I ShortAddr

• For global addresses:

	III-bit Prefix	l ShortAddr
•	MOST utilize a TTT-bit prefix	

• Utilize network-layer mechanisms to maintain uniqueness across subnets

Next Steps

• Reach consensus on

- Fragmentation
- SLAAC with IEEE 802.15.4 short addresses
- Post an update to hc-06
- WGLC

77th IETF: 6lowpan WG Agenda

13:00 Introduction, Agenda	Chairs (5)
13:05 2 – HC-06	JH (15)
13:20 1 – ND	
13:20 ND-08	ZS (15)
13:35 ipv6-nd-simple	EN/SC (15)
13:50 Discussion	Chairs (10)
14:00 0 – IEEE 802.15.4 2006	RS (15)
14:15 (1) – DHCP	JH (15)
14:30 Future Work	Chairs (20)

draft-ietf-6lowpan-nd-08

Authors: Zach Shelby (ed.) Jonathan Hui Pascal Thubert Samita Chakrabarti Erik Nordmark Carsten Bormann

Outline

- The IETF-76 Hiroshima consensus
- nd-08 = just the base mechanism
- Changes since IETF-76 (-07 to -08)
- Issues, ideas and next steps

The Hiroshima consensus

- The consensus after IETF-76 Hiroshima:
- Separate the document
 - Base ND mechanism for the node-router interface
 - Optional backend solutions as separate drafts
- Make address detection optional
 - When address formed from an EUI-64
 - When address assigned using e.g. DHCPv6

nd-08 = just the base mechanism

- Base ND optimization mechanism for LoWPANs
 - Optimizes the host-router interface
 - Node Registration mechanism with NR/NC
- Duplicate detection and address assignment performed when needed by the default router
- Multihop prefix and context information dissemination
- Compatible with link-layer mesh and IP routing
- Incorporates the new Autoconf addressing model

Changes from -07 to -08

- First try at just the base mechanism
- Removed Extended LoWPAN and Whiteboard related sections
- Included reference to the autoconf addressing model (draft-ietfautoconf-adhoc-addr-model)
- Added Optimistic Flag to 6AO
- Added guidelines on routers performing DAD
- Added text about DHCPv6
- Removed the NR/NC Advertising Interval
- Added assumption of uniform IID formation and DAD throughout a LoWPAN

Current Issues

- Nits from Richard Kelsey and Robert Cragie
- Fix the integration of DHCPv6
 - Return lease info to the host somehow? Or have the host implement DHCP?
- Clarification on prefixes used for autoconfiguration and Context ID assignment
- Simplification and optimization still possible
- How to support duplicate address detection?
- What kind of registration message do we need?

How to support duplicate detection?

- What kind of duplicate detection do we need?
 - And what it requires from registration messages
- Detecting duplicate short addresses (not assigned using DHCPv6)
 - Requires an EUI-64 in the registration
- Detecting duplicate EUI-64s (e.g. counterfeiting)
 - Requires an EUI-64, nonce and TID in the registration

The Registration Message

- Registration between a node and its router(s)
- 6lowpan-nd uses an explicit NR/NC
 - Includes acknowledgement and error codes
 - Can be used for duplicate detection
 - Intuitive for use in registration
- nd-simple uses an overloaded NS/NA
 - Has no acknowledgement, can not be used for duplicate detection
 - Registration lifetime as an option
 - Re-uses RFC4861 specification text

Next Steps

- WG to decide duplicate detection support level
- WG to decide registration message style
- Plans for nd-09
 - Integration of features/ideas from nd-simple
 - Fix for DHCPv6 integration
 - Better clarification of prefixes and context
 - Simplification and optimization
 - Editing to fix known nits

77th IETF: 6lowpan WG Agenda

13:00 Introduction, Agenda	Chairs (5)
13:05 2 – HC-06	JH (15)
13:20 1 – ND	
13:20 ND-08	ZS (15)
13:35 ipv6-nd-simple	EN/SC (15)
13:50 Discussion	Chairs (10)
14:00 0 – IEEE 802.15.4 2006	RS (15)
14:15 (1) – DHCP	JH (15)
14:30 Future Work	Chairs (20)

Simple Neighbor Discovery

<draft-chakrabarti-6lowpan-nd-simple-00.txt>

Erik Nordmark erik.nordmark@oracle.com

Samita Chakrabarti samitac@ipinfusion.com

Relationship to 6lowpan-nd-08

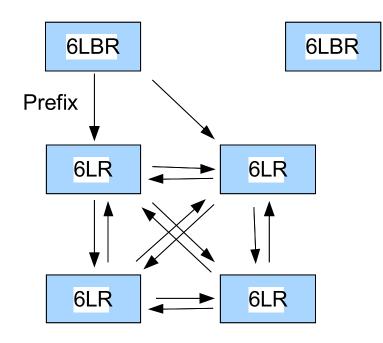
- ^x WG push back in Hiroshima on complexity
- ^λ Zach took the approach to shrink
- We took the approach to start from nothing and add minimal set
 - ^x And we seemed to have missed very few things
- $^{\lambda}$ If we care about complexity
 - ^x Find middle ground between the two drafts

What is missing in RFC 4861?

- Functionality issues arise in route-over when a single subnet spans multiple links
- Performance issues due to ND multicasts for mesh-under
- $^{\lambda}$ Following slides detail the problems to consider

Functionality: Duplicate Address Detection

- DAD assumes link-local multicast packets can be used to find a potential duplicate
 - ^x Doesn't work when a prefix spans multiple links
- ^λ For EUI-64 derived addresses we can skip DAD
 - Assumes vendors never allocate duplicate EUI-64
- But that doesn't handle short addresses, SeND etc
 - $^{\lambda}$ For short addresses, host can use regular DHCPv6


Functionality: Where is the host?

- The routers need to know where each host IP address is attached
 - Since the hosts do not run the routing protocol and prefix is spread across whole 6lowpan
- λ Implies a need for a registration mechanism
 - Note that DAD is separate, hence there is no need for a notion of the registration failing
 - ^x Akin ES-Hello in the OSI protocol stack
- ^λ Host might switch to use a different router
 - Minimize the amount of effort to register with new router(s)

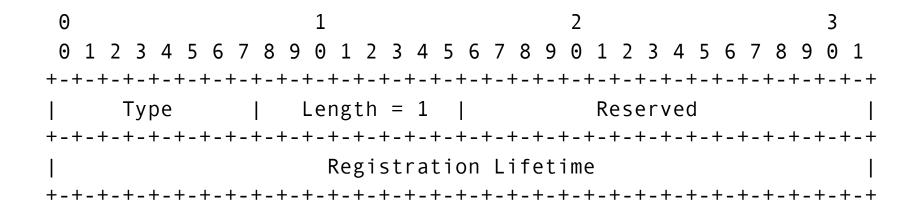
Functionality: Distribute prefixes from edge

- All the routers and hosts need to know the prefix (es)
- Assume the prefix(es) configured in 6LBRs (6lowpan border routers)
- Basic idea is for routers to listen to RA and use that in the RA they send
 - $^{\lambda}$ In nd-08 and this draft
- But this has a problem prefixes might never go away

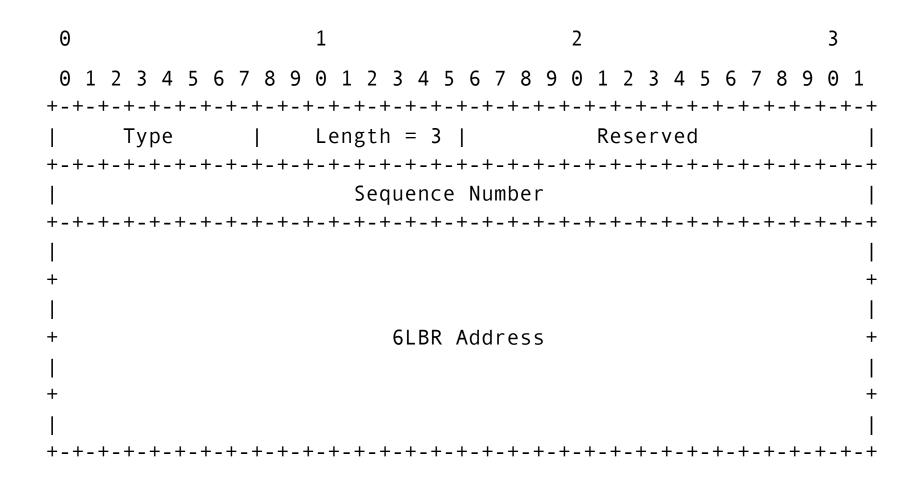
Prefix Distribution problem

Performance: Reduce multicast

- › For 6lowpan there is a desire to avoid multicasts around
 - » Duplicate address detection
 - Router needing to multicast NS for hosts
 - Notice Router needing to multicast NS for non-existing hosts
 - > Periodic unsolicited Router Advertisements
 - Nouter Soliciations


Highlight of draft

- ^λ Concepts of 6LBR, 6LR and host
- ^λ 6lowpan ND options
- Clarifies prefix assignment, bootstrapping, ND for Mesh-under and Route-over topologies
- Requires a 6LBR in the solution for reliable communication – source of prefix for 6lowpan
- Independent of underlying mesh routing protocols


Approach

- ^λ Configuration the same as in nd-08
 - Prefix(es) assigned to 6lowpan
 - ^λ Advertised in RA with 'A' bit set; not 'L' set
- Registration uses new Node Lifetime option in Neighbor Solicitation
 - ^x Host specifies how long to store based on its sleep schedule
 - ^x One NS for each global address of host
- ^λ A new Authoritative Router option in RA
 - $^{\lambda}$ Used to purge old information from RAs
 - λ Allows for multiple 6LBRs

Node Lifetime option

Authoritative Router option

[Note that draft has a typo with an additional field.]

Loosing the default router

- Neighbor Unreachability Detection can be used
 - λ Uses unicast NS/NA
- RFC 4861 assumes that if router lost then a multicast RA will be received from other routers
 - » But we don't want periodic multicast RA
- ^x Instead, when NUD fails for router, handle as if the interface had failed and been restored
 - ^x Send up to three multicast RS to find router(s)
- ^λ Combine this with re-registration

Example: Sequence of NUD and registrations

- ^λ Assume a host that sleeps for 10 minutes
- On wakeup sends a UDP packet; waits for an application ACK (retransmits if needed)
- λ Initially needs to find at least one router
- When it wakes up, the router might be unreachable
- $^{\lambda}$ How do the pieces fit together?

Initial boot sequence

- ^λ Send RS per RFC 4861
- Once RA received send NS with registration
 - ^λ Lifetime set to more than 10 minutes
- $^{\lambda}$ Can choose to register with multiple routers
 - ^λ But host needs to refresh all its registrations

Sequence at host wakeup

- ^λ Send UDP packet to default router
 - NUD state was STALE (older than 30 seconds)
 - ^λ Transitions NUD state machine to DELAY
- ^{*λ*} If application ACK in less than 5 seconds
 - Application can suppress NUD (reachability confirmation in RFC 4861)
- Otherwise unicast NS to default router (NUD)
- $^{\lambda}$ After 3 tries (3 seconds), state = UNREACH
- New in draft: trigger sending multicast RS here

Bits missing from current draft

- Need to be able to carry the compression contexts with the prefixes
 - ^x Hence we need the CID part of the RA prefixes from nd-08
- ^λ Desire to select router closer to the edge
 - Using the two-bit default router preferences as in nd-08 seems useful

Security

- Can Secure Neighbor Discovery optionally be used in the future?
- I think this is easy as long as each registration message is only for one IP address
 - $^{\lambda}$ That is what is in the draft
 - Otherwise we could make things more efficient when a host has multiple IP addresses
- ^x But the SeND addresses are not EUI-64 derived
 - ^λ Need for DAD across the 6lowpan

Open Issues

- Short address support: is DHCPv6 on host what we want?
- ^λ NUD vs. L2 acknowledgements?
 - If the MAC layer provides an ACK/NACK should we exploit that?
- λ Avoid multicast RS?
 - ^x Problem is that host doesn't know the routers' L2 addresses
 - ^x If L2 "anycast" address this multicast can be avoided

77th IETF: 6lowpan WG Agenda

13:00	Introduction, Agenda	Chairs (5)
13:05	2 – HC-06	JH (15)
13:20	1 – ND	
13:2	0 ND-08	ZS (15)
13:3	5 ipv6-nd-simple	EN/SC (15)
<mark>13:5</mark>	0 Discussion	Chairs (10)
14:00	0 – IEEE 802.15.4 2006	RS (15)
14:15	(1) – DHCP	JH (15)
14:30	Future Work	Chairs (20)

77th IETF: 6lowpan WG Agenda

13:00	Introduction, Agenda	Chairs (5)
13:05	2 – HC-06	JH (15)
13:20	1 – ND	
13:2	0 ND-08	ZS (15)
13:3	5 ipv6-nd-simple	EN/SC (15)
13:5	0 Discussion	Chairs (10)
14:00	0 – IEEE 802.15.4 2006	RS (15)
14:15	(1) – DHCP	JH (15)
14:30	Future Work	Chairs (20)

Discussion topics 6lowpan

René Struik (Certicom Research) E-mail: rstruik@certicom.com

Certicom Corp. is a wholly owned subsidiary of Research in Motion, Ltd.

IETF 6lowpan and 802.15.4 standard(s)

6lowpan references to 802.15.4:

Reference to 802.15.4-2006 Reference to 802.15.4-2003

draft-ietf-6lowpan-hc-06.txt

RFC 4944 - Transmission of IPv6 Packets over 802.15.4 Networks (September 2007)

Evolution of 802.15.4:

- 802.15.4-2003: now deprecated
- 802.15.4-2006: main formatting-related differences:
- more generous payload size (actual vs. worst-case header-size calculations)
- security (complete overhaul)
- 802.15.4 TG4e: main formatting-related differences:
- significant overhead reduction (exploits shared state between communicating parties)

Suggestion: consider moving towards newer versions of 802.15.4

6lowpan efforts on "compressed" IPv6:

- draft-ietf-6lowpan-hc-06.txt

– RFC 4944 - Transmission of IPv6 Packets over 802.15.4 Networks (September 2007)

Notes:

- Other IETF groups (e.g., 6lowapp, RoLL) use IPv6 as well and would benefit from overhead reduction.
- Note: with RFC 4944, not always possible, e.g., if (traffic class, flow label) \neq (0,0)
- Overhead reduction may become robust if security enabled

Security for constrained IPv6 applications:

Current work seems to "borrow" general IPv6 security constructs, which may not be suitable for resource-constrained environments (energy, communication and computational overhead, latency, storage cost, implementation cost).

Suggestion: consider overhead reduction and security for resource-constrained networks

Future Work

Suggestions:

- Investigate moving towards newer versions of 802.15.4;
- Consider further overhead reduction techniques, in coordination with other IETF groups interested in resource-constrained networks (e.g., 6lowapp, roll, smartgrid);
- -Fully consider security for resource-constrained networks with IPv6.

Discussion:

- Interest in these efforts?
- How to realize (re-charter, coordinate with others, etc.)?

77th IETF: 6lowpan WG Agenda

13:00 Introduction, Agenda	Chairs (5)
13:05 2 – HC-06	JH (15)
13:20 1 – ND	
13:20 ND-08	ZS (15)
13:35 ipv6-nd-simple	EN/SC (15)
13:50 Discussion	Chairs (10)
14:00 0 – IEEE 802.15.4 2006	RS (15)
14:15 (1) – DHCP	JH (15)
14:30 Future Work	Chairs (20)

Simple DHCPv6 for 6LoWPANs (draft-hui-6lowpan-dhcp-00)

Jonathan Hui

6LoWPAN WG Meeting 77th IETF Meeting Anaheim, California

Outline

- Background
- Why DHCPv6
- Simple DHCP for 6LoWPAN networks
- Next steps

Background

6LoWPAN networks need configuration

- Usual application, network, vendor-specific parameters
- 6LoWPAN parameters (e.g. HC contexts)
- Link parameters (e.g. IEEE 802.15.4 short address)

Why DHCPv6?

- Most widely used mechanism for managing configuration information across a network
 - Stateless and stateful operation
 - Relay Agents allow DHCP server to be off-link (great for route-over)
 - Very general and extensible (potential downside)
- Goal: simple and compact DHCP for 6LoWPANs
 - Focus on utilizing as little as necessary
 - Strict subset of DHCPv6
 - Define options for 6LoWPAN-specific parameters
 - Allow stateless translation between 6LoWPAN-DHCP and DHCPv6

Overview

• 6LoWPAN Edge Routers

- MUST implement DHCP server or relay agent
- MUST subscribe to ANY_6LOWPAN_DHCP_ROUTER_AND_AGENT

6LoWPAN Routers

• MUST implement relay agent (simple and stateless)

• Overall effect

- Nodes can obtain configuration if network is connected by routers
- Selection of a specific DHCP server at the edge routers
- No need to use multicast to discover DHCP server/relay agent

DHCPv6 Simplification

Eliminate binding to a specific DHCP server

- No server discovery mechanism
- Do not maintain state about servers
- Rely on 6LoWPAN edge router configuration to point to server
- Reduce DHCP messages to:
 - Solicit with Rapid Commit (initial request)
 - Rebind (refresh information)
 - Information-request (stateless DHCP request)
 - Reply (server response to messages above)

DHCPv6 Compaction

- Assume EUI-64 for client identifier
 - Save 8 bytes in header (for all messages)
- Assume a single relay hop within 6LoWPAN
 - Utilize client-identifier as peer address
 - Relay header reduced to a single byte
- Reduce granularity of time fields to 10 sec units
 - Reduce time fields to 2 bytes each
- Maintain 2-byte type/length fields
 - Can carry existing DHCPv6 options unmodified if needed

Example Messages

Solicit/Rebind Message (58 octets)

- DHCP Header, Elapsed Time Opt, IA_NA Opt, IA Addr Opt, 6LoWPAN Short Addr Opt
- Reply Message (52 octets)
 - DHCP Header, IA_NA Opt, IA Addr Opt, 6LoWPAN Short Addr Opt
- Relay Solicit/Rebind Message (59 octets)
 - Relay Header, DHCP Header, Elapsed Time Opt, IA_NA Opt, IA Addr Opt, 6LoWPAN Short Addr Opt
- Relay Reply Message (53 octets)
 - Relay Header, DHCP Header, IA_NA Opt, IA Addr Opt, 6LoWPAN Short Addr Opt

Next Steps

- Does this make sense?
- Is there interest in this kind of work?

77th IETF: 6lowpan WG Agenda

13:00 Introduction, Agenda	Chairs (5)
13:05 2 – HC-06	JH (15)
13:20 1 – ND	
13:20 ND-08	ZS (15)
13:35 ipv6-nd-simple	EN/SC (15)
13:50 Discussion	Chairs (10)
14:00 0 – IEEE 802.15.4 2006	RS (15)
14:15 (1) – DHCP	JH (15)
14:30 Future Work	Chairs (20)