
MT>1 support
over Bundled Links

Jonathan Sadler (Tellabs)
Zuchang Shen (Tellabs)

draft-sadler-ccamp-rsvp-mt-bundled-links-00

Motivation
• In Multi-domain TE networks, core border routers end up with

multiple LSPs between them
• Scaling the number of LSPs between borders is an key issue

– As number of LSPs increase between borders, number of RSVP-TE
SESSIONs handled by intermediate routers grows

• Minimizing RSVP sessions is desirable
– Reduces memory/CPU requirements on intermediate routers

Motivation
• Nesting provides a way for end-to-end sessions to be separated

from edge-to-edge sessions
– Allows multiple end-to-end LSPs with common traffic behaviors to be

put into one edge-to-edge LSP through core domain.
– End-to-end SESSION details remain intact

• Endpoints, specific TE-bandwidth allocation, etc.
– Traffic demands from nested LSPs accounted for in outer LSP TSPEC.

Motivation
• Reserving total LSP bandwidth similar but different for

Packet & TDM:
– For Packet, accounting for total bandwidth is done by increasing edge-

to-edge bandwidth requested in IntServ TSPEC
• Label object contains single label

– For TDM, accounting for total bandwidth is done by increasing MT in
SONET/SDH or OTN TSPEC

• Label object contains Label List detailing timeslots used.

Motivation
• Intermediate switches need to have mechanisms to provide

adequate bandwidth for nested LSPs
– In Packet world, this can provided by inverse mux functions operating at

a lower layer (e.g. LAG or ML-PPP)
– In TDM world, there is no equivalent. However, link bundling provides

similar routing scalability.

Motivation
• Problem:

– Use of MT over Bundled Links doesn’t work when MT value is greater
than the number of timeslots available on one link

• Bundle advertises adequate capacity is available
• Problem comes from lack of information in RSVP_HOP object

– RSVP_HOP object limited to describing one downstream link
(and optionally one upstream link)

– Need RSVP_HOP information that corresponds to label list entries

Aggregate: 10 Available VC4s

3 Available VC4s
4 Available VC4s
3 Available VC4s

192.0.2.42 192.0.2.43

if=10
if=11
if=12

if=42
if=43
if=44

PATH:
MT=7

Proposed Extension

• Allow RSVP_HOP object to contain IF_ID TLVs for more
than one downstream and one upstream link

• Problem - Link Bundling RFC 4201:
– Deprecating Component Link TLVs made TLV position in

RSVP_HOP object important. Text states:
“Except in the special case noted below, for a bidirectional LSP,
only one or two TLVs SHOULD be used in an IF_ID RSVP_HOP
object or IF_ID TLV. The first TLV always indicates the component
link identifier of the downstream data channel on which label
allocation must be done. When present, the second TLV always indicates the
component link identifier of the upstream data channel
on which label allocation must be done. When only one TLV is
present, it indicates the component link identifier for both
downstream and upstream data channels.”

– Need method for multiple TLVs that is backward compatible

Method
• IF_ID TLVs in RSVP_HOP object maintain a pattern similar to

existing RSVP_HOP usage:
– Interleave Downstream/Upstream link information
– If only one set of Downstream/Upstream link TLVs is provided,

all labels in the LABEL object apply to the downstream link and
all labels in the UPSTREAM_LABEL object apply to the upstream link

• IF_ID TLVs in RSVP_HOP object allow for additional links to be
specified:
– If two or more sets of Downstream/Upstream links are provided,

the order of downstream links relates to the order of the labels in the
LABEL object and the order of upstream links relates to the labels in the
UPSTREAM_LABEL object.

– Resulting BNF:
IF_ID_TLVs ::= <TLV_IFs>+
TLV_IFs ::= <Downstream_IF> [<Upstream_IF>]

• Upstream_IF is mandatory for Bidirectional LSPs when more than
one TLV_IF is provided
– even when Upstream_IF is the same as the Downstream_IF

Example Encodings
• 1 x Unidirectional VC4 LSP

TSPEC: MT=1
RSVP_HOP TLV: {C000022A:0x0000000a}
LABEL: {0x00010100}

• 1 x Bidirectional VC4 LSP
TSPEC: MT=1
RSVP_HOP TLV: {C000022A:0x0000000a}
UPSTREAM_LABEL: {0x00010100}
LABEL: {0x00010100}

• 2 x Unidirectional VC4 LSP
TSPEC: MT=2
RSVP_HOP TLVs: {C000022A:0x0000000a} {C000022A:0x0000000b}
LABEL: {0x00010100}, {0x00010100}

• 2 x Bidirectional VC4 LSP
TSPEC: MT=2
RSVP_HOP TLVs: {C000022A:0x0000000a} {C000022A:0x0000000a},

{C000022A:0x0000000b} {C000022A:0x0000000b}
UPSTREAM_LABEL: {0x00010100}, {0x00010100}
LABEL: {0x00010100}, {0x00010100}

Additional Method

• When MT is large, the RSVP_HOP object may
become large due to lots of repeated information

• Use of Run Length Encoded TLVs (RLE TLVs)
would reduce the size of the RSVP_HOP object
– Each RLE TLV replaces multiple IFs from

Downstream or Upstream sequence
– Maintains Upstream/Downstream interleave

• One RLE TLV does NOT contain information for both
Upstream and Downstream IFs

RLE IF_ID TLVs
• New RLE IF_ID TLV formats would be:

– IPv4 RLE IF_ID TLV
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Run-length | Reserved |
+-+
| IPv4 Address |
+-+

– IPv6 RLE IF_ID TLV
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Run-length | Reserved |
+-+
| IPv6 Address |
| |
| |
| |
+-+

– Unnumbered RLE IF_ID TLV
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Run-length | Reserved |
+-+
| IPv4 Address |
+-+
| Interface ID |
+-+

Example
RLE IF_ID TLV Usage

• 10 x Unidirectional LSP
TSPEC: MT=2
RSVP_HOP TLVs: {5, C000022A:0x0000000a}, {5, C000022A:0x0000000b}
LABEL: {0x00010100}, {0x00010200}, {0x00010300},

{0x00020100}, {0x00020200}, {0x00010100},
{0x00010200}, {0x00010300}, {0x00020100},
{0x00020200}

• 10 x Bidirectional LSP
TSPEC: MT=2
RSVP_HOP TLVs: {6, C000022A:0x0000000a} {5, C000022A:0x0000000a},

{4, C000022A:0x0000000b} {5, C000022A:0x0000000b}
UPSTREAM_LABEL: {0x00010100}, {0x00010200}, {0x00010300},

{0x00020100}, {0x00020200}, {0x00020300},
{0x00010100}, {0x00010200}, {0x00010300},
{0x00020100}

LABEL: {0x00010100}, {0x00010200}, {0x00010300},
{0x00020100}, {0x00020200}, {0x00010100},
{0x00010200}, {0x00010300}, {0x00020100},
{0x00020200}

NOTE: While SDH/OTN have requirements that Bidirectional LSPs use the same I/F
for upstream & downstream, this example has been provided to show the
flexibility of the RLE TLV encoding. Specific technology rules still apply.

Additional Work Required

• Need to determine how to handle encoding
in ERO/RRO.

Summary & Proposal

• Scalability of RSVP-TE sessions is important in multi-
domain networks
– Nesting and LAG provides mechanism for Packet
– Nesting and Bundling is a start of a mechanism for SDH/OTN

• Adding a mechanism for MT>1 to be used with bundled
links will further progress scalability
– Draft provides two encodings for RSVP_HOP object

• Work still remains – ERO, RRO

• Looking for co-authors

• Request: WG Draft?

