
1

Domain Name Assertions
(DNA)

Joe Hildebrand

2

Problem

 Hosting providers can’t hold customer certs
– Too much responsibility

– Not allowed by customers

 Too many connections between servers
– Two for each domain pair

– E.g.: 10k domains each side = 200 million sockets

3

Approach

 Assert domain names
– OUTSIDE start-TLS

– At the application level

 Verify domains with extensible proof
– One such proof: Attribute Certificates (RFC 3281)

– Others (such as SAML) can be added later

– Custom assertions possible

4

Server-to-Server example
T: <stream:stream from='target.tld' to='originator.tld'>

T: <stream:features>

 <assert xmlns='urn:xmpp:dna:0' from='target.tld'/>

 </stream:features>

O: <challenge xmlns='urn:xmpp:dna:0' to='target.tld'>

 <proof type='urn:xmpp:dna:proof:attribute-cert'/>

 </challenge>

T: <proof xmlns='urn:xmpp:dna:0' from='target.tld'>

 ascii-armored attribute certificate

 </proof>

O: <valid xmlns='urn:xmpp:dna:0' to='target.tld'/>

O: <assert xmlns='urn:xmpp:dna:0' from='originator.tld'/>

...

5

State Transitions

6

HTTPS Proof?

 Proof URL like: https://target.tld/delegate-xmpp.xml

 Serve up a doc with delegation

 Check domain of cert offered by HTTPS according to
XMPP rules (with “www.”+target.tld option)

 Deployable ✔

  Is this different than OAuth?

7

OAuth Proof

 Domain owner: User

 Asserting entity: Consumer

 Validating entity: Service Provider

8

Client-to-server

 Same problem as S2S, but easier
– One domain

– No modifications

 Client suspends judgment on certificate names
– Looks for assertion in stream:features

9

Other protocols

 Could be used for SMTP, IMAP, etc.

 Each needs its own syntax (as for SASL)

 States, proof types stay the same

