

SNMP over (D)TLS
IETF-75

Wes Hardaker
ietf@hardakers.net

mailto:ietf@hardakers.net

Overview

● Recap of Current Draft Status (-04)
● SSH Identity / securityName refresher
● (D)TLS X.509 / securityName overview
● subjectAltName details
● Other (D)TLS Considerations

Current Draft Status

● draft-hardaker-isms-dtls-tm-04
● Updates since -03:

● Added support for TLS
– Brings list to TLS, DTLS/UDP and DTLS/SCTP
– Uses (D)TLS to speak generically about any of them
– Uses TLS or DTLS over XXX to speak about individuals

● Other minor wording changes

● Mostly Done!
● The biggest area for critique is the MIB tables (IMHO)
● (and is most of the open issues to discuss today)

Review:
SSH Identity / securityNames

● SSH has an implicit “identity” that is sent
through the protocol.
● Maps dircetly to a securityName
● Traditionally short (“login names”)

● Simple and Easy, mostly
● TSM optionally adds a “xxxx:” prefix
● We provide “otheruser@” prefix support to

securityNames for non-1:1 mappings

Review:
SSH Identity / securityName

TSM
Application

(GET)
SSHTM

SSH

SSH

SSHTM TSM
Application

(agent)

Client

Network

Server

securityName = “Wes” SSH identity = “Wes”

 SSH identity = “Wes” securityName = “Wes”

SSH Protocol Identity = “Wes”

Review:
In other words...

● SSH was fairly straight forward
● An identity string is passed directly in SSH
● ISMS relied on pre-existing SSH configuration

● SSH already knew where user certificates were
● SSH already knew a list of remote address and

server certificate bindings were
● IE, configuration was entirely pre-existing

Now on to (D)TLS...

● (D)TLS is:
● Provides no “I'm Wes” identity field
● Uses X.509 certificate based authentication
● Any needed identity information is expected to

come from the certificate

● X.509 certificates provide a lot of data:
● Location, Organizational Information, Name(s), ...
● No direct easy 1:1 mapping choice

X.509 Identity / securityName

TSM
Application

(GET)
TLS-TM

TLS

TLS

TLS-TM TSM
Application

(agent)

Client

Network

Server

securityName = “Wes” X.509 Identity =

 securityName = “Wes”

O = IETF
OU = ISMS
CN = Wes Hardaker
...

O = IETF
OU = ISMS
CN = Wes Hardaker
...

X.509 Identity / securityName
3 issues:

TSM
Application

(GET)
TLS-TM

TLS

TLS

TLS-TM TSM
Application

(agent)

Client

Network

Server

securityName = “Wes” X.509 Identity =

 securityName = “Wes”

O = IETF
OU = ISMS
CN = Wes Hardaker
...

O = IETF
OU = ISMS
CN = Wes Hardaker
...

#1: Client-side Mapping

#3: Server-side Mapping

#2: Server Sends its Certificate
The Client Ensures it's Connecting to the Right Server

3 Issues
Client Side Certificate Usage

(1) SNMP-TARGET-MIB outputs: securityName
● Which client certificate should be used?

(2) What server certificate should be expected?
● Can I be sure I'm connecting to the right server?

Server Side Certificate Usage

 (3) How to map a client's certificate to a
securityName?

X.509 Identity / securityName
3 issues:

TSM
Application

(GET)
TLS-TM

TLS

TLS

TLS-TM TSM
Application

(agent)

Client

Network

Server

securityName = “Wes” X.509 Identity =

 securityName = “Wes”

O = IETF
OU = ISMS
CN = Wes Hardaker
...

O = IETF
OU = ISMS
CN = Wes Hardaker
...

#1: Client-side Mapping

#3: Server-side Mapping

#2: Server Sends its Certificate
The Client Ensures it's Connecting to the Right Server

(1) Client Sending:
tlstmParamsTable

● Extention table to the snmpTargetParamsTable
● Adds Certificate hash type and hash value
● Used to look up a certificate in an

implementation dependent certificate store
● (D)TLS connects using this certificate

(1) Client Sending:
tlstmParamsTable

● Discussed on the mailing list
● General agreement that this was the right way to go
● Minor disagreements about the RowStatus wording

● Believed Resolved

X.509 Identity / securityName
3 issues:

TSM
Application

(GET)
TLS-TM

TLS

TLS

TLS-TM TSM
Application

(agent)

Client

Network

Server

securityName = “Wes” X.509 Identity =

 securityName = “Wes”

O = IETF
OU = ISMS
CN = Wes Hardaker
...

O = IETF
OU = ISMS
CN = Wes Hardaker
...

#1: Client-side Mapping

#3: Server-side Mapping

#2: Server Sends its Certificate
The Client Ensures it's Connecting to the Right Server

(2) Client Receiving:
Server Certificate Expectations

● In SSHTM we assumed known_hosts exists
● (D)TLS MAY use certificate hierarchies
● In (D)TLSTM we can:

a) Decide that the CommonName must match
● (though common, this usage is being deprecated)

b) Decide that one subjectAltName must match

c) Configure a single certificate hash per server
● (Would extend the snmpTargetAddrTable)

d) Optional a, b, and/or c

e) Assume something exists already

(2) Client Receiving:
Server Certificate Expectations

● Discussed on the mailing list
● Not fully resolved?
● Current agreement seems to be:

– Text to discuss subjectAltName mapping
● Our addressType needs to be converted to subjectAltName types
● (referencing external documentation)

– Don't standards-support but don't prohibit

certificate hash per address
● Any discussion today?

X.509 Identity / securityName
3 issues:

TSM
Application

(GET)
TLS-TM

TLS

TLS

TLS-TM TSM
Application

(agent)

Client

Network

Server

securityName = “Wes” X.509 Identity =

 securityName = “Wes”

O = IETF
OU = ISMS
CN = Wes Hardaker
...

O = IETF
OU = ISMS
CN = Wes Hardaker
...

#1: Client-side Mapping

#3: Server-side Mapping

#2: Server Sends its Certificate
The Client Ensures it's Connecting to the Right Server

 (3) Server Receiving:
Client X.509 Certificates

● Servers will receive a client's X.509 certificate
● Need to map this to a securityName

● Not yet discussed on the mailing list
● (some problems are handled by X.509 handling

already, but are referenced here for education;
some problems ISMS needs to handle directly)

 (3) Server Receiving:
Client X.509 Certificates

● Usable X.509 Certificate Fields:
● Direct Map (doesn't scale well)
● CommonName (maybe long; deprecating)
● SubjectAltName (is the future)

● Compounded By Multiple Certificate Issuers
● Issuer1 CN=”IETF”, User CN=”Wes”
● Issuer2 CN=”EvilHacker”, User CN=”Wes”

● Result:
● A certificate to securityName system is needed
● The good news is that a solution is fairly simple

 (3) tlstmCertificateToSNTable

● Ordered list of mapping rules
● Mapping Types:

● Direct Certificate Hash SN = specified string
● TrustAnchor Hash SN = CommonName
● TrustAnchor Hash SN = SubjectAltName

● Very Simple Table
● 8 columns including index and storage/rowstatus
● But flexible for small-nets or enterprise-wide

(3) tlstmCertificateToSNTable

TlstmCertificateToSNEntry ::= SEQUENCE {

 tlstmCertID Unsigned32,

 tlstmCertHashType X509IdentifierHashType,

 tlstmCertHashValue X509IdentifierHash,

 tlstmCertMapType INTEGER { specified(1),
bySubjectAltName(2), byCN(3) },

 tlstmCertSecurityName SnmpAdminString,

 tlstmCertStorageType StorageType,

 tlstmCertRowStatus RowStatus

}

(3) subjectAltName Considerations
● RFC5280 SubjectAltName definition:
SubjectAltName ::= GeneralNames

 GeneralNames ::= SEQUENCE SIZE (1..MAX) OF GeneralName

 GeneralName ::= CHOICE {

 otherName [0] OtherName,

 rfc822Name [1] IA5String,

 dNSName [2] IA5String,

 x400Address [3] ORAddress,

 directoryName [4] Name,

 ediPartyName [5] EDIPartyName,

 uniformResourceIdentifier [6] IA5String,

 iPAddress [7] OCTET STRING,

 registeredID [8] OBJECT IDENT }

subjectAltName Considerations

● Choices when looking through subjectAltNames:

1) Pick first of mappable types: rfc822Name, dNSName
• What about IP Addresses?

2) Add a selection column (rfc822Name or dNSName)
• Again, picking first found if multiple exist

3) Define our own extension OID for mapping

4) A combination of the above

● Draft currently does #1
● What happens when length is too long (>32)?

Other (D)TLS Issues/Considerations

● DTLS over UDP provides no session
identification
● (resolved in draft)
● IE, every packet that arrives on a port could belong to

any session that is communicating over that port
● DTLS-TM Rule: Must have only one session per

source-addr, source-port, dest-addr, dest-port
– (functionally requires clients to use unique port per server)

● Current draft provides a lot of overview text
● X.509, DTLS, etc.
● Keep or remove?

Questions?

Secret Slides.

● Shhhhhh
● Stop
● Don't go on.

Certificate Mapping Options

● Don't standardize mapping (ie, no MIB tables)
● Not a complete solution and difficult deployment

● Standardize Mapping
● Require conforming certificates

– (e.g. must have a subjectAltName)
– Still requires issuer configuration and ordering
– Reduces reuse of existing infrastructure

● Provide mapping tables
– Best trade off

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

