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Overview

● Recap of Current Draft Status (-04)
● SSH Identity / securityName refresher
● (D)TLS X.509 / securityName overview
● subjectAltName details
● Other (D)TLS Considerations



  

Current Draft Status

● draft-hardaker-isms-dtls-tm-04
● Updates since -03:

● Added support for TLS
– Brings list to TLS, DTLS/UDP and DTLS/SCTP
– Uses (D)TLS to speak generically about any of them
– Uses TLS or DTLS over XXX to speak about individuals

● Other minor wording changes

● Mostly Done!
● The biggest area for critique is the MIB tables (IMHO)
● (and is most of the open issues to discuss today)



  

Review:
SSH Identity / securityNames

● SSH has an implicit “identity” that is sent 
through the protocol.
● Maps dircetly to a securityName
● Traditionally short (“login names”)

● Simple and Easy, mostly
● TSM optionally adds a “xxxx:” prefix
● We provide “otheruser@” prefix support to 

securityNames for non-1:1 mappings



  

Review:
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Review:
In other words...

● SSH was fairly straight forward
● An identity string is passed directly in SSH
● ISMS relied on pre-existing SSH configuration

● SSH already knew where user certificates were
● SSH already knew a list of remote address and 

server certificate bindings were
● IE, configuration was entirely pre-existing



  

Now on to (D)TLS...

● (D)TLS is:
● Provides no “I'm Wes” identity field
● Uses X.509 certificate based authentication
● Any needed identity information is expected to 

come from the certificate

● X.509 certificates provide a lot of data:
● Location, Organizational Information, Name(s), ...
● No direct easy 1:1 mapping choice



  

X.509 Identity / securityName
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X.509 Identity / securityName
3 issues:
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3 Issues
Client Side Certificate Usage

(1) SNMP-TARGET-MIB outputs: securityName
●  Which client certificate should be used? 

(2) What server certificate should be expected?
●  Can I be sure I'm connecting to the right server?

Server Side Certificate Usage

 (3) How to map a client's certificate to a 
securityName?
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(1) Client Sending: 
tlstmParamsTable

● Extention table to the snmpTargetParamsTable
● Adds Certificate hash type and hash value
● Used to look up a certificate in an 

implementation dependent certificate store
● (D)TLS connects using this certificate



  

(1) Client Sending: 
tlstmParamsTable

● Discussed on the mailing list
● General agreement that this was the right way to go
● Minor disagreements about the RowStatus wording

● Believed Resolved
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(2) Client Receiving:
Server Certificate Expectations

● In SSHTM we assumed known_hosts exists
● (D)TLS MAY use certificate hierarchies
● In (D)TLSTM we can:

a) Decide that the CommonName must match
● (though common, this usage is being deprecated)

b) Decide that one subjectAltName must match

c) Configure a single certificate hash per server
●  (Would extend the snmpTargetAddrTable)

d) Optional a, b, and/or c

e) Assume something exists already



  

(2) Client Receiving:
Server Certificate Expectations

● Discussed on the mailing list
● Not fully resolved?
● Current agreement seems to be:

– Text to discuss subjectAltName mapping
● Our addressType needs to be converted to subjectAltName types
● (referencing external documentation)

– Don't standards-support but don't prohibit

certificate hash per address
● Any discussion today?
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 (3) Server Receiving:
Client X.509 Certificates

● Servers will receive a client's X.509 certificate
● Need to map this to a securityName

● Not yet discussed on the mailing list
● (some problems are handled by X.509 handling 

already, but are referenced here for education; 
some problems ISMS needs to handle directly)



  

 (3) Server Receiving:
Client X.509 Certificates

● Usable X.509 Certificate Fields:
● Direct Map                   (doesn't scale well)
● CommonName               (maybe long; deprecating)
● SubjectAltName              (is the future)

● Compounded By Multiple Certificate Issuers
● Issuer1 CN=”IETF”,        User CN=”Wes”
● Issuer2 CN=”EvilHacker”, User CN=”Wes”

● Result:
● A certificate to securityName system is needed
● The good news is that a solution is fairly simple



  

 (3) tlstmCertificateToSNTable

● Ordered list of mapping rules
● Mapping Types:

● Direct Certificate Hash   SN = specified string
● TrustAnchor Hash   SN = CommonName
● TrustAnchor Hash   SN = SubjectAltName

● Very Simple Table
● 8 columns including index and storage/rowstatus
● But flexible for small-nets or enterprise-wide



  

(3) tlstmCertificateToSNTable

TlstmCertificateToSNEntry ::= SEQUENCE {

    tlstmCertID           Unsigned32,

    tlstmCertHashType     X509IdentifierHashType,

    tlstmCertHashValue    X509IdentifierHash,

    tlstmCertMapType      INTEGER { specified(1), 
bySubjectAltName(2), byCN(3) },

    tlstmCertSecurityName SnmpAdminString,

    tlstmCertStorageType  StorageType,

    tlstmCertRowStatus    RowStatus

}



  

(3) subjectAltName Considerations
● RFC5280 SubjectAltName definition:
SubjectAltName ::= GeneralNames

   GeneralNames ::= SEQUENCE SIZE (1..MAX) OF GeneralName

   GeneralName ::= CHOICE {

        otherName                       [0]     OtherName,

        rfc822Name                      [1]     IA5String,

        dNSName                         [2]     IA5String,

        x400Address                     [3]     ORAddress,

        directoryName                   [4]     Name,

        ediPartyName                    [5]     EDIPartyName,

        uniformResourceIdentifier       [6]     IA5String,

        iPAddress                       [7]     OCTET STRING,

        registeredID                    [8]     OBJECT IDENT }



  

subjectAltName Considerations

● Choices when looking through subjectAltNames:

1) Pick first of mappable types: rfc822Name, dNSName
• What about IP Addresses?

2) Add a selection column (rfc822Name or dNSName)
• Again, picking first found if multiple exist

3) Define our own extension OID for mapping

4) A combination of the above

● Draft currently does #1
● What happens when length is too long (>32)?



  

Other (D)TLS Issues/Considerations

● DTLS over UDP provides no session 
identification
● (resolved in draft)
● IE, every packet that arrives on a port could belong to 

any session that is communicating over that port
● DTLS-TM Rule: Must have only one session per 

source-addr, source-port, dest-addr, dest-port
– (functionally requires clients to use unique port per server)

● Current draft provides a lot of overview text
● X.509, DTLS, etc.
● Keep or remove?



  

Questions?



  

Secret Slides.

● Shhhhhh
● Stop
● Don't go on.



  

Certificate Mapping Options

● Don't standardize mapping (ie, no MIB tables)
● Not a complete solution and difficult deployment

● Standardize Mapping
● Require conforming certificates

– (e.g. must have a subjectAltName)
– Still requires issuer configuration and ordering
– Reduces reuse of existing infrastructure

● Provide mapping tables
– Best trade off
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