
Unstanding Mapping

Dan Jen and Lixia Zhang

RRG @ IETF75

Why This Talk

 Mobility support needs some sort of binding/
mapping

 Scalable routing needs some sort of binding/
mapping too

 Should we kill 2 birds by one stone?
  Note the word “Should”, not “can”

Look before we leap: What are the basic
differences between the two, if any?

7/31/09 2

Mapping/Binding for Mobility

(our observation)

 Mobile (host/subnet): identified by an “ID”
 Packets to Mobile: delivered to an IP address
 Binding: ID IP address

  Can be done in different ways/at different layers
  MIP: binding at IP layer, ID: in form of IP address
  ILNP: binding through DNS; ID: in form of DNS name

  Commonality
  Updates sent to the binding server
  All senders know exactly where (to get binding) to send

packets
  Know binding prior to data arrival

  No caching by 3rd party
7/31/09 3

Mapping/binding for scalable routing

 Reduce RIB/FIBentries removed from table
 Mapping:

1.  IDrouted address (e.g. SHIM6, ILNP)
2.  Non-routed addressrouted address (e.g. APT,

Ivip, LISP, six/one router)

(1) get mapping from DNS (with its own challenges)
Below we discuss and compare mapping of (2)

7/31/09 4

Scalable routing by Map-n-Encap

 Done by network entry point; transparent to
sending hosts
  Pre-propagate binding info (NERD, APT DM, VA)
  find binding info upon data arrival and cache (APT

ITR, LISP ITR)

7/31/09 5

Comparing the Two

 The two mapping systems function in two
different and somewhat conflicting ways.

 Mobility mapping systems
  Holding binding at (logically) one place
  Granularity: Up to host movement
  support frequent mapping information changes.

 Scalable routing:
  Mapping info must be available at large number of

data entry points
  Either pre-distribute out, or
  demand driven caching
  Granularity: site

7/31/09 6

Using one mapping for both purposes

 Can one rely on caching to reduce lookup
overhead?
  Turn the problem to how to deal with stale cache

entries

 Can one reduce cache TTL to reduce stale entries
for mobiles?
  Going back to high lookup overhead

 Can this be done?
 Would this make the best design tradeoff?

7/31/09 7

