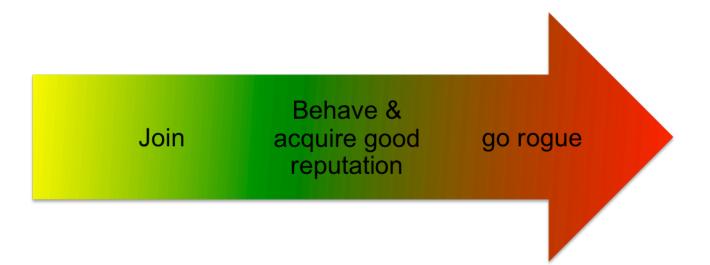
Security Issues and Solutions in Peer-topeer Systems for Real-time Communications

draft-schulzrinne-p2prg-rtc-security-00

Henning Schulzrinne Enrico Marocco Emil Ivov

Overview

- Attacker motivations
- Attacker resources
- P2P for real-time (vs. file sharing)
 more than just a DHT


Attacker motivations

- Disrupt communications
 - extortion, dislike, political, ...
 - incumbent operator?
- Financial gain
 - impersonation
 - theft of service
 - spamming (SPIT)
- Fun & fame

Attacker resources

- Identities:
 - IP addresses
 - if used for DHT position
 - user subscription limitations
 - mobile phone #'s
 - email addresses, ...
- Computational resources
 - botnets make proof-of-work largely useless

Attack timing

March 2009 (IETF 74)

Review: P2P for real-time

- Map names to other identifiers

 sip:alice@example.com → alice@128.59.16.1
- Provide (computational) services
 - proxying (registration, services)
 - relaying (NAT traversal)
- Store data
 - configuration data
 - voicemail

File sharing vs. real time

	File sharing	Real-time
Distributed database	file location hundreds or thousands per user	User locations: one per user
Availability	same file, hundreds of copies	each user is unique
Integrity	poison file store with bogus material → but no direct threat to user	impersonate user → compromise user communication integrity
Confidentiality	Files are public (may want to hide origin)	Communications is private (src/dest & content)

Admission control

- Goal: keep rogue percentage low
 - allows detection, voting, bypassing
- Group charter + group authority
 - authority certifies candidates compliance with charter
 - central authority or voting
 - how practical in semi-anonymous systems?
 - what information can votes be based on?
 - ballot stuffing by compromised nodes
- Use CAPTCHA to reduce impact of bots
- RELOAD (and Skype) uses central authority

Position in overlay

- Sybil attacks do not depend on identifier
 - but preventing nodes from choosing location randomizes attacks
- IP address or identifier provided by central authority
 - IP address doesn't work well for NATed devices
 - Allows attacker more choice
- Use temporary identifiers?
 - randomizes attack targets
- Use diametrically opposed IDs to avoid local collusion
 - rogue nodes can add neighbors

Identifying malicious peers

- Proactive
 - use test cases to detect misbehavior
 - "mystery shopper"
- Reactive
 - detect and report misbehavior
- Reputation management
 - mostly investigated for file sharing
 - difficult to prevent another denial-of-service attacks of rogue nodes
 - transitive trust

Real-time services are different

- Don't need everyone to be a peer
 - just enough resources to get job done
 - just increases routing latency (log(N))
 - increases chances of corruption
- Typically, promote nodes from clients to peers
 - use invitation, rather than self-promotion
 - based on uptime, resources, public IP address, geographic need
- Why would a client want to become peer?
 - − Skype: closed \rightarrow (almost) no choice
 - Open systems: incentives ← → randomized promotion for sybil prevention

Attack

- Denial of service
 - black hole signaling or media
 - fictitious error responses ("no such number")
 - use iterative routing getting closer?
- Integrity of location bindings
 - Identity-based crypto \rightarrow non-intuitive identifiers
- Integrity of content (voice mail, ...)
 - generally, only inserter needs access

Summary (& my take)

- P2P systems for real-time applications \neq file sharing
 - more than just key \rightarrow value mapping
- Identity scarcity is crucial
 - leverage existing hard-to-clone identities
- Reputation systems are unlikely to work
 - either central entity knows "good guys"
 - or they all look the same
- Avoiding centralization at all cost may not matter for realtime services
 - typically, don't have Napster/PirateBay problem