Single PCN Threshold Marking by using PCN baseline encoding for both admission and termination control

Daisuke SATOHMika IshizukaOratai PhanachetYukari Maeda

NTT Advanced Technology Corporation

Copyright© 2008 NTT Advanced Technology Corporation

Outline

- Motivation
- How to divide three states of congestion
- How to mark according to congestion
- Admission control
- Termination control
- Simulation results Admission control –
- Simulation results Termination control-

Motivation

- Making an algorithm by PCN baseline encoding
- Explicitly detecting whether PCN traffic is more than PCN-Admissible-rate or not
- Explicitly detecting whether PCN traffic is more than PCN-Supportable-rate or not

Marking and control operations

To achieve all the packets marked

To achieve all the packets PCN-marked

Ordinary Threshold marking

Copyright© 2008 NTT Advanced Technology Corporation

To achieve some packets marked

To achieve some packets marked (step:1/2)

Copyright© 2008 NTT Advanced Technology Corporation

Marking frequency

- When N = 1 (ordinary marking, marking.frequency = 1),
- MMNNMNMNNNN
- 1 2 <u>3</u> 4 5 <u>6</u>
- N N N N $\underline{\mathbf{M}}$ N N N N N $\underline{\mathbf{M}}$ N
- When N=3 (marking.frequency =1/3)
- M: marked packet
- N: not marked packet

To achieve some packets marked (step:2/2)

To achieve no packets marked

Copyright© 2008 NTT Advanced Technology Corporation

To achieve no packets marked

Example of Token buckets implementation

Admission control

- 1. Egress measure the CLE per Ingress
- 2. Egress sends the CLE to Ingress
- 3. Ingress receives the CLE
- 4. If the CLE is greater than CLE threshold then Admission stop.
- 5. If the CLE is less than CLE threshold then Admitting new flows
 - CLE threshold should be chosen less than AR/(N*SR).

- Almost the same as that of CL
- 1. Egress detects L-sequential marked packets.
- 2. Egress starts measuring receiving PCN rate during some interval.
- 3. Egress sends the received PCN rate to Ingress.
- 4. Ingress starts measuring sending PCN rate during some interval.
- 5. Ingress terminates flows equal to the quanity: sending PCN rate receiving PCN rate + y%*receiving PCN rate).
- 6. Go back to 1.

The difference between CL and STM

Impact to marking behaviour

- TBthreshold.threshold is not intermediate depth of the token bucket.
- This algorithm uses marking one-Nth packet in threshold marking.

Basic evaluation – admission control -

Copyright© 2008 NTT Advanced Technology Corporation

Basic evaluation – termination control -

•				
•	Traffic Type	Load (x Link speed)	Over Termination %	
•			STM	CL
•	CBR		5.54	3.57
	VBR	1.0	6.95	13.78
	SVD		17.34	16.83
•	CBR		4.94	5.158
	VBR	1.5	14.56	23.810
	SVD		16.94	17.549
•	CBR		3.86	21.018
	VBR	3.0	30.82	48.645
	SVD		38.21	56.552

NTT Advanced Technology Corporation

Shinjuku Mitsui Bldg. 2-1-1, Nishi-shinjuku, Shinjuku-ku, Tokyo, 163-0431, Japan TEL +81 3 5325 0711 FAX +81 3 5326 7831 URL: http://www.ntt-at.co.jp/

Copyright© 2008 NTT Advanced Technology Corporation