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Controlling Features 1(4)

● Problem:

– The only way to define optional-to-implement data 
is to create a complete module for the data. With 
many small optional features, there will be many 
small modules. The capability list will be very long.
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Controlling Features 2(4)

  // Example instance module

  feature “rollback-on-error” {
    description “...”;
}

type errorOptionType {
    enum “stop-on-error”;
    enum “continue-on-error”;
    enum “rollback-on-error” {
        if-feature “rollback-on-error”;
    }
} 

● Proposed solution:

– Add two new statements, feature and 
if feature‑ , and add a new RPC get-features.
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Controlling Features 3(4)

// An example where an entire subtree is optional
// to implement

container server {
    ...
    container advanced {
        if-feature advanced-stuff;

        leaf foo { ... }
        ...
    }
}
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Controlling Features 4(4)
  // New RPC 

rpc get-module-features {
    input {
        leaf namespace { 
            type inet:uri;
        }
    }
    output {
        list features {
            leaf namespace {
                type inet:uri;
            }
            leaf-list feature {
                type string;
            }
        }
    }
}
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Import by revision

● Problem

– The current import mechanism leads to the 
conclusion that once a grouping or typedef is 
defined, it can never be changed.

● Proposed solution

– Allow an optional import by revision:
module foo {
    ...
    import bar-types {
        prefix bar
        revision “2008-07-31”;
    }
    container x {
        uses bar:y;
    }
}
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Revision 1(2)

● Problem:

– Should  the revision statement be mandatory?

● Proposed solution:

– Make it mandatory. 
● A revision is important for schema discovery to function 

properly.
● Necessary for import by revision.
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Revision 2(2)

● Problem:

– The revision statement's argument is currently a 
date string: YYYY-MM-DD.  Some said that this is 
too restrictive; maybe a module has to be published 
more than one time per day.

● Proposed solution:

– Keep as it is, this is not a problem

● Alternative 1:

– Append an optional simple integer to the date:
● 2008-07-26.1
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Revision 3(3)

● Alternative 2:

– Use RFC 3339 date-time: 
● 2008-07-26T14:48:10+02:00

● Alternative 3: 

– Ditto but UTC only (for simpler comparisons)
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Clean up augment and uses 1(4)
● Problem:

– The augment statement is used for two purposes; 
adding nodes to an external module's structure, and 
adding nodes to a local usage of grouping:

// external augment
augment “/if:interfaces/if:interface” {
    leaf my-interface-param { ... }
}

// local augment
uses Interface;
augment interface/unit {
    leaf my-vlan-param { ... }
}
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Clean up augment and uses 2(4)

● Proposed solution:

–  move the augment statement inside the  uses:

uses Interface {
    augment interface/unit {
        leaf my-vlan-param { ... }
    }
}
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Clean up augment and uses 3(4)

● Problem:

– The current way of doing refinements does not 
match how augment is used, and it makes the other 
statements' grammar context-dependent.  E.g. a 
leaf within a uses cannot specify a type.

// current refinement
uses Interface {
   container interface {
       leaf mtu {
           default 1500; // add default
        }
   }
}   
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Clean up augment and uses 4(4)

● Proposed solution:

–  Add a new refine statement with similar syntax to 
augment.

uses Interface {
    refine interface/mtu {
        default 1500;
    }
    augment interface/unit {
        leaf my-vlan-param { ... }
    }
}
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Server Variance

● Data model anticipated variance

– features
● optional-to-implement data
● type variance

– server-assigned leafs
– server-supplied defaults

● Server specific legal variance

– limits on max-elements
– changing from config to non-config

● Server specific illegal variance

– changing a list to a leaf; changing keys, ...
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Server-supplied values

● Problem: 

– There is no formal way for a client to know if the 
server will assign a value for a missing optional leaf.

● Proposed solution:

– Add a new statement 
● assigned-by ( “user” / “system”)
● default is assigned-by user
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Server-supplied defaults

● Problem: 

– There is no formal way to specify in the model 
where the server is free to choose its own default 
value, and there is no way for a client to learn 
server-specific default values.

● Proposed solution:

– Add parameters to modules:
module foo {
    parameter mtu-default;
    ...
    leaf mtu {
        type uint32;
        default $mtu-default;
    }
}  
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Multiple patterns

● Problem:

– Currently, there can be one pattern restriction to 
string types.  

● Proposed solution:

– Allow multiple pattern statements, which would be 
ANDed together. Each pattern can have it's own 
error-message which gives more precise errors. 
This is in alignment with XSD, which allows multiple 
patterns.
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Conditional content

A proposal on the mailing list was to add the 
when statement to other statements, not only 
augment:

container ethernet {
    when “../ifType == 'ethernet'”;
    
    // ethernet specific stuff here
}
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Why Constrain keyref?

● Problem:

– A question on the ML was why a config keyref is 
constrained to refer to config data only.

– A related question was why the keyref target must 
exist in a valid configuration. Sometimes it makes 
sense to say that something happens if the target 
exists, but it is perfectly ok if the target does not 
exist.

● Proposed solution:

– Make it possible to mark the keyref to allow 
unsatisfied reference.  Details TBD.
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Other stuff

● Change presence to boolean?  If so, is there a 
better word than presence?  presence-
meaningful.

● “Augment enumeration”.  Is current solution 
with choice good enough?  It means the 
designer must design for extensibility.

● Can the keys of a list be config false, while the 
rest of the list is config?  Can one be config false 
and one config true?  Should we describe this?
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Overlays 1(2)

Q. should there be a std way to add vendor-
specific annotations to existing modules?  But 
the technique can be used for other things, see 
slide on implementation specific defaults.
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Overlays 2(2)

Summary of mailing list discussion: overlay vs. 
annotate stmt.

annotate: does not work for things w/o identifiers 
(you cannot annotate 'uses', 'augment', 'import') 
we must put typedef, grouping in same naming 
scope.  can only annotate schema tree, but 
maybe that's good enough?

overlay: introduces context-dependent grammar, 
e.g. a list stmt in an overlay must not have a key 
substmt.
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