
YANG Open Issues

IETF 72
Martin Björklund
mbj@tail-f.com

2

Controlling Features 1(4)

● Problem:

– The only way to define optional-to-implement data
is to create a complete module for the data. With
many small optional features, there will be many
small modules. The capability list will be very long.

3

Controlling Features 2(4)

 // Example instance module

 feature “rollback-on-error” {
 description “...”;
}

type errorOptionType {
 enum “stop-on-error”;
 enum “continue-on-error”;
 enum “rollback-on-error” {
 if-feature “rollback-on-error”;
 }
}

● Proposed solution:

– Add two new statements, feature and
if feature‑ , and add a new RPC get-features.

4

Controlling Features 3(4)

// An example where an entire subtree is optional
// to implement

container server {
 ...
 container advanced {
 if-feature advanced-stuff;

 leaf foo { ... }
 ...
 }
}

5

Controlling Features 4(4)
 // New RPC

rpc get-module-features {
 input {
 leaf namespace {
 type inet:uri;
 }
 }
 output {
 list features {
 leaf namespace {
 type inet:uri;
 }
 leaf-list feature {
 type string;
 }
 }
 }
}

6

Import by revision

● Problem

– The current import mechanism leads to the
conclusion that once a grouping or typedef is
defined, it can never be changed.

● Proposed solution

– Allow an optional import by revision:
module foo {
 ...
 import bar-types {
 prefix bar
 revision “2008-07-31”;
 }
 container x {
 uses bar:y;
 }
}

7

Revision 1(2)

● Problem:

– Should the revision statement be mandatory?

● Proposed solution:

– Make it mandatory.
● A revision is important for schema discovery to function

properly.
● Necessary for import by revision.

8

Revision 2(2)

● Problem:

– The revision statement's argument is currently a
date string: YYYY-MM-DD. Some said that this is
too restrictive; maybe a module has to be published
more than one time per day.

● Proposed solution:

– Keep as it is, this is not a problem

● Alternative 1:

– Append an optional simple integer to the date:
● 2008-07-26.1

9

Revision 3(3)

● Alternative 2:

– Use RFC 3339 date-time:
● 2008-07-26T14:48:10+02:00

● Alternative 3:

– Ditto but UTC only (for simpler comparisons)

10

Clean up augment and uses 1(4)
● Problem:

– The augment statement is used for two purposes;
adding nodes to an external module's structure, and
adding nodes to a local usage of grouping:

// external augment
augment “/if:interfaces/if:interface” {
 leaf my-interface-param { ... }
}

// local augment
uses Interface;
augment interface/unit {
 leaf my-vlan-param { ... }
}

11

Clean up augment and uses 2(4)

● Proposed solution:

– move the augment statement inside the uses:

uses Interface {
 augment interface/unit {
 leaf my-vlan-param { ... }
 }
}

12

Clean up augment and uses 3(4)

● Problem:

– The current way of doing refinements does not
match how augment is used, and it makes the other
statements' grammar context-dependent. E.g. a
leaf within a uses cannot specify a type.

// current refinement
uses Interface {
 container interface {
 leaf mtu {
 default 1500; // add default
 }
 }
}

13

Clean up augment and uses 4(4)

● Proposed solution:

– Add a new refine statement with similar syntax to
augment.

uses Interface {
 refine interface/mtu {
 default 1500;
 }
 augment interface/unit {
 leaf my-vlan-param { ... }
 }
}

14

Server Variance

● Data model anticipated variance

– features
● optional-to-implement data
● type variance

– server-assigned leafs
– server-supplied defaults

● Server specific legal variance

– limits on max-elements
– changing from config to non-config

● Server specific illegal variance

– changing a list to a leaf; changing keys, ...

15

Server-supplied values

● Problem:

– There is no formal way for a client to know if the
server will assign a value for a missing optional leaf.

● Proposed solution:

– Add a new statement
● assigned-by (“user” / “system”)
● default is assigned-by user

16

Server-supplied defaults

● Problem:

– There is no formal way to specify in the model
where the server is free to choose its own default
value, and there is no way for a client to learn
server-specific default values.

● Proposed solution:

– Add parameters to modules:
module foo {
 parameter mtu-default;
 ...
 leaf mtu {
 type uint32;
 default $mtu-default;
 }
}

17

Multiple patterns

● Problem:

– Currently, there can be one pattern restriction to
string types.

● Proposed solution:

– Allow multiple pattern statements, which would be
ANDed together. Each pattern can have it's own
error-message which gives more precise errors.
This is in alignment with XSD, which allows multiple
patterns.

18

Conditional content

A proposal on the mailing list was to add the
when statement to other statements, not only
augment:

container ethernet {
 when “../ifType == 'ethernet'”;

 // ethernet specific stuff here
}

19

Why Constrain keyref?

● Problem:

– A question on the ML was why a config keyref is
constrained to refer to config data only.

– A related question was why the keyref target must
exist in a valid configuration. Sometimes it makes
sense to say that something happens if the target
exists, but it is perfectly ok if the target does not
exist.

● Proposed solution:

– Make it possible to mark the keyref to allow
unsatisfied reference. Details TBD.

20

Other stuff

● Change presence to boolean? If so, is there a
better word than presence? presence-
meaningful.

● “Augment enumeration”. Is current solution
with choice good enough? It means the
designer must design for extensibility.

● Can the keys of a list be config false, while the
rest of the list is config? Can one be config false
and one config true? Should we describe this?

21

Overlays 1(2)

Q. should there be a std way to add vendor-
specific annotations to existing modules? But
the technique can be used for other things, see
slide on implementation specific defaults.

22

Overlays 2(2)

Summary of mailing list discussion: overlay vs.
annotate stmt.

annotate: does not work for things w/o identifiers
(you cannot annotate 'uses', 'augment', 'import')
we must put typedef, grouping in same naming
scope. can only annotate schema tree, but
maybe that's good enough?

overlay: introduces context-dependent grammar,
e.g. a list stmt in an overlay must not have a key
substmt.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

