

DCCP Implementation Status

dccp@vger.kernel.org

Outline

1. Applications & Ports

2. Socket API - Packet Priorities

3. DCCP Nat Traversal

4. CCID-3 changes

5. Current work

6. Further work

Applications and ports

● Work by Leandro Melo de Sales, Brasil
● CCID-4 subtree
git://eden-feed.erg.abdn.ac.uk/dccp_exp

● DCCP port for Embedded Phone Project
– Maemo kernel with DCCP support

– for mobile devices such as the Nokia N810
– https://garage.maemo.org/projects/ephone

● gstreamer DCCP plugin
– GNU gstreamer is the toolbox for streaming apps

– facilitates wide range of possible applications/uses

Socket API: Packet Priorities

● Work by Tomasz Grobelny, Poland
● per-packet priorities

– timeout, numeric priority, symbolic priority, ...

– passed as cmsg(3) parameter to sendmsg()

– can use different types of priority queue

● policies which act on and interpret the priorities
– drop-lowest-priority first

– look-at-best-before-date-of-packet

– send-best-packet-next ?

– ...

DCCP NAT Traversal

● Work by Patrick McHardy
– DCCP NAT available already at a Linux near you

– Linux the only (stateful) NAT to support DCCP

● Implementation of draft-ietf-dccp-simul-open:
– fairly straightforward & already works

– need IANA type for DCCP-Listen packet

– at the moment supports DCCPv4 and 1 peer

– easily extended to other scenarios

draft-dccp-simul-open ...

Backwards compatibility in 3 lines

--- a/net/dccp/ipv4.c

+++ b/net/dccp/ipv4.c

@@ -809,6 +809,10 @@ static int dccp_v4_rcv(

 dh = dccp_hdr(skb);

+ /* Ignore DCCP-Listen packets (NAT Traversal) */

+ if (dh->dccph_type == DCCP_PKT_INVITE)

+ goto discard_it;

 dccpd_seq = dccp_hdr_seq(dh);

 dccpd_type = dh->dccph_type;

Current work

● Contributions from Wei Yonjung:
– TAHI tests for DCCP

● helped uncover several bugs
● proved very useful input

● (slowly) adding changes from rfc3448bis-06
● rewriting CCID-3 code to support ECN

– ECN subtree available already

● Oscillation Prevention for CCID-3/4
● modularisation of TFRC code

TFRC librarification

void ccid3_hc_rx_packet_recv(sk, skb)

{
struct ccid3_hc_rx_sock *hcrx = ccid3_hc_rx_sk(sk);
const u64 ndp = dccp_sk(sk)->dccpor_ndp;
const bool is_data_packet = dccp_data_packet(skb);

if (tfrc_rx_congestion_event(&hcrx->hist, &hcrx->li_hist,
 skb, ndp, ccid3_first_li, sk))
 send_feedback(sk, skb, CCID3_FBACK_PARAM_CHANGE);

 else if (hcrx->feedback == CCID3_FBACK_NONE && is_data_packet)
 send_feedback(sk, skb, CCID3_FBACK_INITIAL);

 else if (!loss_pending(&hcrx->hist) && is_data_packet &&
 SUB16(dccp_hdr(skb)->ccval, hcrx->last_counter) > 3)
 send_feedback(sk, skb, CCID3_FBACK_PERIODIC);

}

The entire CCID-3 Receiver in one slide:

Oscillation Reduction before/after

Further work

● ECN work to be finished
– needs testing & verification

● CCID-3 needs better RTT estimation
– see other slides

● CCID-2 needs an overhaul
– reverse-path congestion not supported

– very good initial results in using CWND Validation

● Ack Vectors need new algorithms
– on 802.11g links they grow up to 0.5 kilobyte!

Conclusions

● need more testers/contributors
– TAHI tests proved very useful

– code only gets good through frequent review

● still a lot to be done
● Linux DCCP framework is reasonably stable

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

