Routing Scalability: Separation or Elimination?

Dan Jen, Daniel Massey, Michael Meisel, Lan Wang, Beichuan Zhang, and Lixia Zhang

Talk by Lixia Zhang Routing Research Group IETF72, August 1, 2008

The Goal of This Talk

Contributing to RRG's goal of design convergence (with acknowledgment to many people for input)

- Understanding the design space by carefully studying all proposals
- Identify commonality/differences at the highest branching points
- This talk does not describe new design, but to
 - Solicit consensus on direction to march forward
 - Articulate an overall task list (for later discussion)

Scalable Routing

- Being able to control the scale of the routing system
 - The ability to control, rather than any specific numbers
- Allowing the global transit core to route on aggregatable prefixes only
 - Provider-assigned (PA) addressing
- Two ways to get there
 - Separation
 - Elimination

Separation

- Separating edge prefixes from the transit core
- Edge network prefixes removed from global routing system
 - APT, IVIP, LISP, TRRP: Map & Encap
 - Six/One Router: map & translation
- Requires a mapping system to glue the edges to the middle

Elimination

- Pushing multiple PA addresses all the way into the hosts of multihomed sites
- SHIM6
 - Multiple PA addresses stop at shim layer in a host
 - Lots of hard work has been done here
- Multipath transport
 - As in Mark Handley's proposal: transport layer can make use of multiple PA addresses
- ILNP

Separation, or elimination?

If separation:

- Need to work out a mapping system design
 - Map an edge destination address to the edge network's attachment point to the transit core
 - Mapping info must be distributed to all entry points to the core
- Need to decide between encapsulation and translation

Separation, or elimination?

- Need to develop effective detection and recovery mechanism for failures occuring between the core and edge networks, because they are
 - longer reflected in global routing
 - proposed not to be reflected in the mapping system
 - Need solutions that can detect failures and switch to alternate path promptly (whenever available)
- Need an incremental deployment plan

Separation, or elimination?

If elimination:

- No new work need to be done at network layer
- however there is a conservation of hard work
 - Effective handling of multiple addresses by host/ transport
 - host changes
 - site renumbering when changing providers

Which way to go?

- Some people believe renumbering is nonstarter
- Some people believe all hosts can be changes within reasonable time frame
- The real answer: The future is uncertain

If we choose elimination

- And indeed all edge networks take in PA addresses in next 5 years
- We would succeed without working hard!
 - Of course Handley and friends will work hard to roll out multipath transport, and
 - Sites will have to adopt multiple-addressing and renumbering
- But what if we guessed wrong?

In next 5 years

- IPv4 routing table will continue to grow
- IPv6 deployment would progressing
- Interent could be facing routing scalability crisis...

If we choose separation

- We will have to work really hard to solve the multiple major challenges
- If we choose wrong: all the hard work would be wasted!
 - But we don't do any worse than that
- If we choose right: the hard work will be worthwhile
 - Resolving a decades long problem

See ftp://ftp.ietf.org/ietf-online-proceedings/95jul/ presentations/allocation/pre.allocation.txt

IETF33 Plenary: IP Address Allocation (July 1995)

- up to now, the IP address has served as an invariant, unique identification for the end host. TCP design makes use of this assumption, so do many other protocols and applications.
- As a result, nobody today has a complete list of all the possible places in the protocol architecture that have the IP address hard wired or embedded in it.
- Therefore, contradicting Peter(Ford)'s assumption that most customers do not care about permanent IP addresses, dynamically changing addresses, as required by provider-based assignment, changes the architecture we used to know and causes serious problems at the user ends.

Additional Benefits from Separation

- Raise the barrier against attacks
 - Unwanted traffic could be filtered at the border between edge networks and the transit core
 - Prevent end hosts from sending directly to transit routers
- Provide scaling benefits while multipath transport research getting ready over time
- Scale routing *without dependency* on the assumption that all/majority sites would adopt PA addresses in any given time frame (if ever)

Costs of Separation

- As mentioned earlier
 - significant amount of work to be done!
 - New complexity into the system
 - Potentially also help reduce some of existing complexity
- We are mindful of this; research challenge for coming months and years
- Good engineering design can hopefully enable a gradual roll out with visible benefit along the way

We also want the benefits of Multipath Transport

- End hosts can use multiple paths simultaneously
- End hosts can choose their favorite path(s)
- End hosts see the end-to-end picture in load balancing
- End hosts can adapt to changes quickly
- End-to-end resilience against individual path failures

Separation + Multipath Transport

- It is important to support multipath transport
- Separation works well with Multipath transport
 - Edge multihomed site can split its prefix into multiple subprefixes
 - Each subprefix corresponds to one of the site's providers
- Use separation for scalability
 - Map each PI subprefix to the desired provider
 - PI prefixes still stay out of the global routing table

Benefits of Combining Separation with Multipath Transport

- Get all of the benefits of both schemes
- For solving routing scalability, cost is aligned with benefit
- Separation enables edge networks to engineer traffic under multipath transport
 - Edge networks decide what path choices their end users have
 - Independent of what providers they connect to

"Mobility as next BIG thing"

- "Support 10 billion flying toasters"
- If we choose separation,
- We will design a mapping system
- can it be used to support mobility?
 - Different opinions exist
 - Further investingation needed

Putting all pieces together: Tasks (first identify tasks, then figure out who owns what)

- Develop a separation solution
 - work out a mapping system design
 - figure out Encapsulation, or Translation
 - develop effective failure detection and recovery mechanisms
- Multipath transport progressing in parallel
 - Maximizing the benefit of resource pooling
- Clarify name space: separating the two
 - Node identifiers ← we do not have one deployed today (if DNS name does not fit the bill); do we need one tomorrow? How to get it? (and what properties should they have?)
 - IP address (further separation between edge/transit addr's?)
- Understand the interplay among the above
- Reach consensus, start drafting working plan

Thank You!

• Questions? Comments?