#### Thoughts on a New Namespace

Ran Atkinson Presented by Steve Blake



#### "Standing on the Shoulders of Giants"

- Computer Science sometimes has been accused of blindly reinventing the wheel.
- We actively tried to avoid that, so credit to:
  - Dave Clark for (c.1995) email to a public mailing list proposing to split the IP address into two pieces.
  - Mike O'Dell for two early proposals (8+8, GSE), in the 1990s.
  - The IRTF Name Space RG (NSRG), c. 1999-2002.
- This work extends and enhances those early ideas:
  - Like HIP, this work dates back to the author's participation in the IRTF NSRG early this decade.

#### Architectural Claim

If we provide a richer set of namespaces then the Internet Architecture can better support mobility, multi-homing, and other important capabilities:

- provide a broader set of namespaces than at present.
- reduce/eliminate names with overloaded semantics.
- provide crisp semantics for each type of name.

#### Effects of APIs

- Most C programmers still use the BSD Sockets API
  - Sockets API does not itself support DNS
  - This forces Applications to call into DNS Resolver, hence forces them to be aware of IP addresses and other lowlevel details
- Most Java programmers use a DNS-aware API
  - Java designers carefully used data-hiding and abstraction in their API design
  - Applications are aware of DNS names, but not aware of IP addresses or other low-level details
  - Encourages more abstract application protocol design

#### What to do ?

- Revisit the naming architecture of the Internet
  - Applying what we have learnt over 2+ decades
  - > The IRTF Namespace RG focused on this topic.
- Consider adding additional namespaces
  - Network-layer host identifiers (not used for routing)
  - Service Names
  - Others also, perhaps.
- This talk focuses on how Network-layer host identifiers can help solve some parts of the architectural gap.

## Some Existing Namespaces

- IP Address
  - ▶ 128.60.80.2
- IP Subnetwork
  - 128.60.80.0/24
- Domain Name
  - itd.nrl.navy.mil
- Communication Endpoint ("Socket")
  - > TCP port 25 at itd.nrl.navy.mil
- Mailbox
  - username@itd.nrl.navy.mil
- URL
  - http://www.itd.nrl.navy.mil/index.html

Routing RG Issues

## Scalability

- Growth in prefixes inside the Default Free Zone (DFZ) is at least geometric at present.
- Primary cause is growth in site multi-homing, which is also at least geometric at present.
- Primary goal of multi-homed sites is higher availability.
- Important reference for the above data:
  - "IPv4 Address Allocation & the BGP Routing Table Evolution" by X. Meng, Z.
    Xu, B. Zhang, G. Huston, S. Lu, & L. Zhang, ACM Computer Communications Review, 2005.

## Multi-Homing

- A fundamental issue is that current site multi-homing creates additional entropy in the DFZ RIB/FIB
- Why?
  - We multi-home sites using Longest Prefix Match
  - Each multi-homed site adds more-specific prefixes to DFZ
- Why this approach for multi-homing ?
  - Transport-layer pseudo-header checksums include location information, not just host identity
- The real fix is to de-couple the transport protocol state from the network location.

# Mobility

- Actually, mobility is just highly dynamic multi-homing
  - Want transport-layer session(s) to remain up
  - But want to change the network location of participant(s)
- Again, the cleanest fix is to de-couple the transport session state from the network location(s)
  - Mobile IP{v4, v6} try to hide the real network location through Home Address, Tunnelling, and other mechanisms.
    - An assumption for Mobile IP was that one could not change the architecture.
    - ILNP assumes the architecture can be changed.

## Heresy

- The Internet's routing architecture is actually just fine.
- The problem is that we are (ab)using routing to workaround limitations in the Internet's naming architecture.
- If we can sort out the naming architecture, then the existing routing protocols and techniques will be fine and don't need to change.

# ILNP: An 8+8 Approach

#### What is 8+8 ?

- 1) Name of an addressing architecture that split the IP address into a separate Locator and Identifier.
  - from Mike O'Dell in the middle 1990s.
- 2) An specific proposal on how to enhance IPv6; sometimes this is also called "GSE".
  - Also from Mike O'Dell in the 1990s
- 3) A class of IP architectures that is based on the original concept from (1) above
  - In this talk, we are using definition (3) just above.

#### The 8+8 Architecture

- Separate the high-order bits ("Routing Prefix") of an IPv6 address into a Locator field, 64 bits wide.
- Separate the low-order bits of an IPv6 address into an Identifier field, 64 bits wide.
- Transport session state contains only the Identifier.
- IP packet forwarding/routing uses only the Locator.
- One can imagine a range of networking protocols, different in various details, that use this architecture.

## ILNPv6

- We propose an set of enhancements to IPv6, which we call **ILNPv6**:
  - provides full backwards compatibility with IPv6.
  - > provides full support for incremental deployment.
  - > IPv6 routers do not need to change.
- ILNPv6 "splits" the IPv6 address in half:
  - **Locator (L)**: 64-bit name for the subnetwork
  - Identifier (I): 64-bit name for the host
- Same architecture can work for IPv4 (ILNPv4),
  - but a shortage of bits makes the engineering ugly

#### IPv6 Packet Header

0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 + - + - + |Version| Traffic Class | Flow Label Payload Length Next Hdr Hop Limit Source Address + - + --+-+ **Destination Address** + - + --+-+

#### ILNPv6 Packet Header

0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 + - + - + |Version| Traffic Class | Flow Label Payload Length Next Hdr Hop Limit Source Locator Source Identifier Destination Locator Destination Identifier 

#### Locators vs. Identifiers

#### Locator (L):

- uses the existing "Routing Prefix" bits of an IPv6 address.
- hames a single subnetwork (/48 allows subnetting).
- topologically significant, so the value of L changes as subnetwork connectivity changes.
- only used for routing and forwarding.

#### Identifier (I):

- Replaces the existing "Interface ID" bits of an IPv6 address
- Names a (physical/logical/virtual) host, not an interface.
- Remains constant even if connectivity/topology changes.
- uses IEEE EUI-64 syntax, which is the same as IPv6:
- only used by transport-layer (and above) protocols.

#### A Bit More Detail

- All ILNP nodes:
  - have 1 or more Identifiers at a time.
  - Identifiers are independent of the network interface
  - > only **Identifiers** are used at the **Transport-Layer** or above.
  - have 1 or more Locators at a time.
  - only Locators are used to route/forward packets.
- An ILNP "node" might be:
  - a single physical machine,
  - > a virtual machine,
  - or a distributed system.

# Naming Comparison

| Protocol Layer | IP                            | ILNP                          |
|----------------|-------------------------------|-------------------------------|
| Application    | FQDN or<br>IP address         | FQDN                          |
| Transport      | IP address<br>(+ port number) | Identifier<br>(+ port number) |
| Network        | IP address                    | Locator                       |
| Link           | MAC address                   | MAC address                   |

# ILNP: Transport Layer Changes

- CRITICAL CHANGE:
  - Transport-layer pseudo-header only includes IDENTIFIER, never the LOCATOR.
- IMPLICATIONS:
  - > We can multi-home nodes/sites without impacting routing.
  - Mobility just became a built-in/native capability.
  - Need a way to tell correspondents when we move
  - Historically, IETF concerned about authenticating location changes and providing equivalent security to current IPv6

# ILNP: DNS Enhancements

- New resource records (forward lookups)
  - I: Identifier(s), unsigned 64-it value, EUI-64 syntax
  - L: Locator(s), unsigned 64-bit value, topological
  - Each of these has a preference value, as with MX records.
  - Nota Bene: DNS permits per-resource-record TTL values
    - Expect I values to be relatively longer-lived in all cases.
    - Expect L values to be relatively shorter-lived if mobile/multihomed.
- One performance optimisation
  - LP: Locator Pointer; points to an L record
  - Also has a preference value.
- Reverse lookups can work as they do today

## **DNS Enhancements**

| NAME            | DNS Type | Definition                                  |
|-----------------|----------|---------------------------------------------|
| Identifier      | I        | Names a Node                                |
| Locator         | L        | Names a subnetwork                          |
| Locator Pointer | LP       | Forward pointer from<br>FQDN to an L Record |

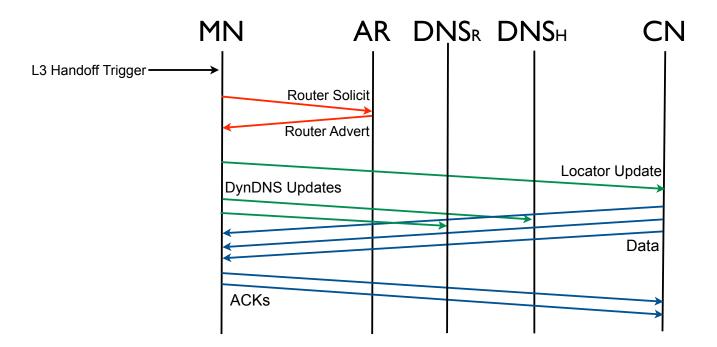
## Generating a Packet

- Source performs DNS lookup on destination's FQDN.
- Source learns the set of I and L values for destination.
  - Like MX records, I and L records have preference values.
  - All valid I and L records are stored in local session cache
- Source selects the Source Locator and the Source ID to use for its own packet(s) to this destination.
- Source selects the Destination Locator and Destination ID to use.
- Source creates the packet and sends it out.

# Mobility Approach

## Naming and Mobility

- With MIP (v4 and v6), IP addresses retain their dual role, used for both **location** and **identity**:
  - overloaded semantics creates complexity, since all IP addresses are (potentially) topologically significant.
- With ILNP, identity and location are separate:
  - new Locator used as node moves:
    - reduces complexity: only Locator changes value.
  - constant Identifier as node moves:
    - agents not needed and triangle routing never occurs.
  - upper-layer state (e.g. TCP, UDP) only uses Identifier.
    - Recall that an Identifier names a node, not an interface.


# Mobility has 2 Primary Aspects

- 1) Rendezvous
  - How initially to find a node's location to start a new session
- 2) Location Updates
  - How to maintain existing communications sessions as one or more end nodes for that session change location
- ILNP uses DNS for initial rendezvous
- ILNP primarily uses control traffic for updates,
  - can fall back to DNS if this is ever necessary.

## Mobility Implementation

- Implementation in correspondent node:
  - uses DNS to find MN's set of Identifiers and Locators.
  - only uses Identifier(s) in transport-layer session state.
  - uses Locator(s) only to forward/route packets.
- Implementation in mobile node (MN):
  - accepts new sessions using currently valid I values.
  - With ILNPv6, when the MN moves:
    - MN uses ICMP Locator Update (LU) to inform other nodes of the revised set of Locators for the MN.
    - LU can be authenticated via IP Security (or Nonce).
    - MN uses Secure Dynamic DNS Update (RFC-3007) to revise its Locator(s) in its Authoritative DNS server

## ILNPv6 Network Handoff



| MN   | Mobile Node          |
|------|----------------------|
| AR   | Router serving MN    |
| DNSR | DNS Server (reverse) |
| DNSH | DNS Server (forward) |
| CN   | Correspondent Node   |

# Multi-Homing

## Multi-Homing with ILNP

- ILNP supports both site multi-homing & host multihoming – and provides resilience/availability for both
- ICMP Locator Update mechanism handles uplink changes (e.g. fibre cut/repair).
- ILNP reduces size of RIB in DFZ:
  - > more-specific routing prefixes are no longer used for this.
- In turn, this greatly helps with BGP scalability.
- New optional DNS Locator Pointer (LP) record can enhance DNS scalability (e.g. for site multi-homing).
- Same approach also supports mobile networks.

Network Realms (Scoped Addressing & "NAT")

## ILNPv6: "NAT" Integration

- IP Address Translation (NAT/NAPT) is here to stay:
  - > many residential IP gateways use NAT or NAPT.
  - often-requested feature for IPv6 routers is NAT/NAPT.
- ILNPv6 reduces issues with these deployments:
  - With ILNPv6, we have "Locator Translation", instead.
  - Identifiers don't change when Locators are translated.
  - Upper-layer protocol state is bound to I only, never to L.
  - Translation is now invisible to upper-layer protocols.
- ILNPv6 IPsec is not affected by NAT:
  - Security Association is bound to Identifiers, not Locators.
  - ILNP AH covers Identifiers, but does not cover Locators.
  - ILNP IPsec and "NAT" work fine together (w/o extra code)

# Security Considerations

## Security Mechanisms

- IP Security with ILNP:
  - can use IPsec AH and ESP for cryptographic protection
  - > ILNP AH includes I values, but excludes L values
  - IPsec Security Association (SA) bound to value of I, not L
- New IPv6 Destination Option Nonce:
  - contains clear-text 64-bit unpredictable nonce value
  - protects against off-path attacks on a session (child proof)
    - existing IP without IPsec is vulnerable to on-path attacks
    - So Nonce use is affordable, yet provides equivalent protection as today
  - primarily used to authenticate control traffic:
    - e.g. ICMP Locator Update (LU) message
- Existing IETF DNS Security can be used as-is

#### **Operational Considerations**

## Incremental Deployment

- ILNPv6 is a set of extensions to IPv6
- No changes to:
  - IPv6 routing protocols,
  - > IPv6 forwarding (no silicon or software changes),
  - IPv6 Neighbour Discovery (ND)
- Implications:
  - Existing IPv6 networks already support ILNPv6 packets.
  - No upgrades needed to routers.
- ILNPv6 enhances host TCP/IPv6 stacks
  - Host OSs will need to be upgraded over time.

## **Backward Compatibility**

- How does an initiating node know whether the remote node is ILNPv6 enabled or not?
  - ILNPv6 DNS records (I, L) will be returned on DNS lookup, in addition to usual IPv6 (or IPv4) DNS records.
- How does a responding node know whether the remote node is ILNPv6 enabled or not ?
  - ILNPv6 Nonce is present in received packet from remote node that is initiating a new UDP/TCP/SCTP session.
- If either node doesn't support ILNPv6, the other node falls back to using existing ordinary IPv6.
- No loss of connectivity/reachability during evolution.

#### ILNPv6: No Free Lunch

- No globally-routable network interface name:
  - potential impact on SNMP MIBs, e.g. to get interface counters form a particular interface.
- A few legacy apps might remain problematic, not sure yet.
  - Probably should test with FTP
- DNS reliance is not new, but is more explicit:
  - at present, users perceive "DNS fault" as "network down".
  - ILNP creates no new DNS security issues.
  - Existing IETF DNS standards work fine without alteration.

#### **Research Status**

#### Next steps

- Demo implementation of ILNPv6 in BSD UNIX
  - which is in progress now.
- Plan to use the demo implementation in experiments to test feasibility of ILNPv6:
  - verify compatibility with IPv6 routers.
  - wide area testing on UK SuperJANET connectivity
    - initially between St Andrews (Scotland) and London (England).
  - Iater extend to international testing over IPv6 backbone.
- Fine-tune ILNP design and implementation based on experimental results.
- Would like to examine ILNP for MANET deployments

## Summary

- ILNP treats the IP Address as consisting of separate Identifier & Locator values.
- This enables native Mobility (without agents).
- Also, Multi-Homing, NAT, and Security are well integrated with Mobility.
- Improvements in the Naming Architecture enable simpler protocol approaches and ILNP is consistent with the wider goals of the future direction of the Internet architecture.

## Thank you!

- Three very drafty Internet-Drafts are online:
  - "ILNP Concept of Operations", draft-rja-ilnp-intro-01.txt
  - "Nonce Destination Option", draft-rja-ilnp-nonce-00.txt
  - "Additional DNS Records", draft-rja-ilnp-dns-00.txt
- For more, please contact:
  - Ran Atkinson <u>rja@extremenetworks.com</u>