Overview of MVPN Developments

• Purpose:

- Familiarize multicast ops group with recent MVPN activity
- Get feedback on some controversial options
 - How well will they support enterprise multicast applications?
 - Do they ignore lessons learned from multicast experience?
- Always remember: MVPN service provides enterprise multicast, not Internet multicast

Functionality of Existing Deployments

- Each VPN gets one default multicast *P*tunnel through *P*-network
 – *P* for service *P*rovider, *PE* for *P*rovider *E*dge
- PEs attached to sites of same MVPN autodiscover each other through BGP
- Individual multicast *C-flows* can be dynamically assigned to P-tunnels
 - C for Customer of Provider, CE for Customer
 Edge

Technology of Existing Deployments

- P-tunnels are PIM-built source and/or shared trees connecting the PEs of a VPN
- PEs discover each other, and the P-tunnel identifier, via BGP
- C-packets encapsulated in GRE to be sent on P-tunnel
- For given VPN, PEs are PIM peers

 "Overlay signaling" of C-multicast data is PE-PE PIM over the default P-tunnel

New MVPN Work

- Expand range of supported P-tunnel technologies
 - MPLS as well as PIM/GRE
 - Replace PIM on P-routers
- Allow all kinds of aggregation strategies
 - Enhance BGP auto-discovery to support general "bind C-flow to P-tunnel" capability
- Provide option to use BGP for "overlay signaling" instead of PE-PE PIM
 - Much of the controversy stems from this option

Generalized P-tunnels

- MPLS P-tunnels allowed
 - Not just PIM/GRE
 - LDP P2MP, LDP MP2MP, RSVP-TE
 - N.B.: For P-tunnels, PIM replaced by MPLS, not by BGP
- LDP tunnels are receiver-driven, old familiar paradigm, but with simplifications
- RSVP-TE tunnels are a bit strange in this context (more later)

Aggregation

- Allows general set of tools for binding C-flows to P-tunnels, including aggregation:
 - Non-default P-tunnels not restricted to one C-flow
 - With major MPLS enhancement (upstream-assigned labels), can aggregate multiple VPNs
 - No real knowledge about how best to use this, if at all.
 - Controversy over just how useful this is (feedback?)
 - In abstract, seems like scaling improvement, not clear how useful in practice

What's Strange about RSVP-TE?

- All signaling is head-end initiated
- To assign C-flow to non-default P-tunnel, explicit tracking is *required*
 - Not required for other P-tunnels
- Leaf can't even remove itself without signaling to head end
- P routers must keep track of downstream nodes on RSVP-TE tree
- ATM-like scaling properties seem problematic
- No real alternative when TE is really needed, e.g., for guaranteed bandwidth

Option to use BGP Instead of PIM for Overlay Signaling

- Use BGP, not PIM, to send Join/Prunes from PE to PE
 - New address family to represent and distribute PIM states
- In theory, improves scale in some dimensions:
 - Assuming Route Reflector, eliminates some amount of PE-PE adjacency state
 - Eliminates periodic transmissions:
 - Hellos
 - J/P states that don't change (of course, this is helpful if things are static, less so if things are always changing)
 - (None of these are proven bottlenecks though)

Neat Features of the BGP Option

- Join(S,G)s from different PEs to same upstream PE are comparable BGP routes
 - RR gets a route from each PE receiver
 - RR passes along only one
 - By default, no explicit tracking
- Automated filtering so that only selected upstream PE gets Join
- Backbone <u>not</u> treated as LAN
- Provides unified L3VPN control plane

Bogus Claims about the BGP Option

- Eliminates need for SP to manage PIM
 - NOT! PEs still run PIM with CE.
 - Question: Is PE-CE PIM a bottleneck? If so, BGP signaling addresses the wrong issue.
- PE-PE PIM must run on emulated LAN, which requires full mesh per PE per VPN of PIM trees

- NOT! See "partitioned MDT", "PORT"

- Only way to get rid of Hello overhead
 - NOT! Even deployed MVPN uses BGP, not PIM Hellos, for auto-discovery

Some Not So Good Features of the BGP Option

- Latency increased, less predictable
 - Two TCP hops
 - each one with processing, flow control, congestion control, possibly long queues of unicast routing data
- BGP thrashing can now be caused directly by enduser (not IT dept.) IGMP activity:
 - BGP updates directly related to Join/Prunes
 - DoS attack risked
 - Some BGP dampening possible, at expense of increased latency or more unwanted traffic or more unwanted state
 - Is dedicated RR required?

Sparse Mode is Handled "Differently"

- Difficult to replicate SM exactly in BGP
 - Very hard to replicate Prune(S,G,R) states in BGP
 - Don't want data driven events
- Approach:
 - Once some PE joins a source tree:
 - Use BGP to generate "source active" advertisements
 - Force everyone to the source tree
 - Replace data-driven events by timers
 - Should work, but additional signaling mechanism
- Questionable whether new stuff in support of SM is worthwhile

Ugly Combination: RSVP-TE, BGP, and Aggregation

- BGP signals all PEs in VPN:
 - "I want to move C-(S,G) to this new tunnel"
 - Leaf PEs signal back in BGP, "count me in"
- RSVP-TE signaling done from head-end to add leaves to RSVP-TE P2MP LSP
- If leaf no longer has receivers:
 - leaf uses BGP to tell head end,
 - head end uses RSVP-TE to prune leaf
- To change aggregation, need BGP to advertise P-tunnel identifier, RSVP-TE to create new Ptunnel

Feedback Needed from MBONED

- Will all multicast applications in the enterprise continue to work as expected if BGP-based C-multicast routing is deployed?
- Where if anywhere is multicast deployment experience being disregarded?
- Are the real bottlenecks properly addressed?