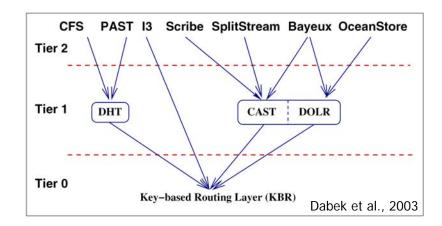
SAM API Concepts Revisited

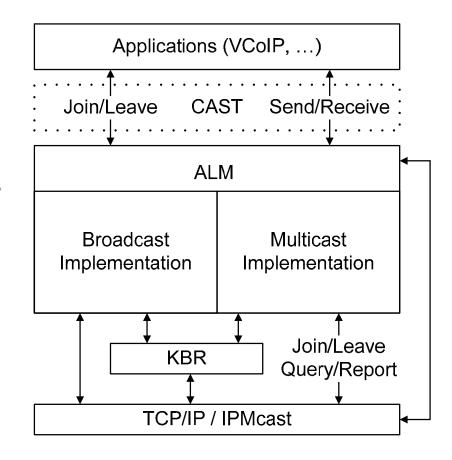
Matthias Wählisch, Thomas C. Schmidt Xiaoming Fu, Jun Lei

{waehlisch, t.schmidt}@ieee.org {fu, lei}@informatik.uni-goettingen.de



Motivation and Objectives

- Motivation
 - Transparent application development
 - Operational for both: ALM and native Multicast
 - o Reusable code, simulation modules, etc.
- Two perspectives
 - Application: Communication with middleware API
 - ALM stack: "Pluggable" Internet communication modules
- Objectives
 - Common group API for developers
 - Basic packet definition


Dabek et al. Model

- Tier0-2: Several middleware layers between application and network
- o Tier3: End user application
- CAST defines shared tree approach and API calls
- Multicast scheme depends on the tier2 application
 - CAST should be understood as wrapper

Looking at End User App: Basic Setup

- o Join a Multicast group
 - Which type of address?
- State maintenance
 - Listener queries/reports
- ALM-API should provide dedicated broadcast
 - Delivery to all members w/o active subscription

Issue #1: Namespace (1)

- o Namespaces:
 - Network addresses: IP (Unicast, Multicast)
 - Application addresses: URI (HTTP, SIP, File System, ...)
 - And probably more ... ??
- o ALM-Middleware may handle addresses in the following way:
 - Direct address mapping to overlay group address
 - Semantic interpretation of address
- Delivery upcall may want to recover original address in namespace
 - Root peer ID is unknown for application and can change

Issue #1: Namespace (2)

- Namespace support allows, e.g., group aggregation
- Ex.: *@irtf.org for sam@irtf.org, mobopts@irtf.org, etc.
 - Compound namespaces
 - Equal to broadcast in a dedicated namespace
- o Possible approach for SCRIBE:
 - Decompose address
 - Cascade RP per namespace
 - Source sends data to 'level0' address
- Possible approach for CAN: Use CAN dimension

Issue #2: Broadcast

- a) Application sends msg. to dedicated broadcast channel
 - Overlay must internally avoid collisions with bcast key
- Application sends to reserved, but well-known address
 - Regular IPv4/v6 broadcast address
 - All-systems/nodes Multicast group address
- Suggest a default broadcast address
- ALM-Middleware guarantees all-node reachability by, e.g., automatic pre-JOIN

Issue #3: IP Mobility

- IP Mobility results in socket invalidation
- Hide IP change on application layer w/o Mobile IP
 - Choose IP independent namespace
 - Decouple overlay ID from IP address
- Reinitialize overlay for routing tables and proximity
 - API call needed, see P2PP

Issue #4: Clarify the term "Group Member Management" in ALM

- Native Multicast
 - Receiver join any source or source specific group
 - Avoids delivering of multicast packets without receivers
- o Meaning of group member management in ALM?
 - Routing maintenance
 - o Create tree, heartbeat, ...
 - Should the middleware provide information about group members to application (s. SAMTK)?
 - o One can use DHT to save information

Conclusion

- SAM API definition should
 - Be independent of specific P2P protocol
 - Preserve original addresses
 - Support different namespaces as predefined by API
 - Offer broadcast handling (address selection ...)
- o Clarification of terms needed: Using P2PP glossary?