Secure Peer-ID Assignment in P2PSIP

Eric Rescorla Network Resonance ekr@networkresonance.com

Background

- This talk is only about peer-id-based security methods
- Need to be able to authenticate that a peer has a given ID
 - Otherwise a variety of routing attacks are possible
- In practice, this means cryptography
 - Need to bind peer-id X to its public key
 - But how?

Cryptographically Generated Peer-Ids

- Peer generates a random key pair K_{pub}, K_{priv}
 - $I = SHA1(K_{pub})$
 - This gives you a "random" peer-id
 - $\ast\,$ Because of the SHA-1
- How does authentication work?
 - Peer signs something with K_{priv} and sends $signature, K_{pub}, I$
 - Relying party verifies signature and that $I = SHA1(K_{pub})$
- $\bullet\,$ This is the technique used in HIP

Chosen Location Attacks

- Attacker wants to get between X and predecessor(X)
 - A random node-id has a 1/N chance of being in (pred(X), X)
 - $\ast\,$ Where N is the number of nodes in the overlay
 - \ast The size of the hashspace is irrelevant
- An attacker can succeed in average $N\!/2$ trials
 - This is an offline attack
- Two basic countermeasures
 - Slow down the search (but keep it offline)
 - Make it an online attack

Proof of Work

- Idea: make generating candidates expensive
 - Example: partial preimage
 - * PeerId = SHA1(X)
 - \ast Bottom n bits of PeerId must be zero
 - · Need to try average $2^{n-1} X$ values to get a valid PeerId
 - * This increases search cost by 2^{n-1}
- The puzzle must be tied to the peer-id
 - Otherwise the attacker can solve the puzzle once and then generate many peer-ids
 - This is why CAPTCHAs are hard to deploy here
- This only works well when the attacker isn't powerful
 - \dots by comparison to the average user
 - Not true with botnets

Invitations

- What if an existing peer asks you to join [MI07]
 - You start as a client with
 - * But you can't attack anyone since you're not a peer
 - The responsible peer invites you to become a peer
 - * Chooses your peer-id
 - * Splits his zone of responsibility with you
- Not clear how this helps
 - Attacker chooses his victim peer
 - \ast Joins the overlay
 - * Waits to be invited as a client
 - * This gives partial control of location
 - Also, how do you cryptographically bind key to peer-id

Central Enrollment Server

- We have a central server
 - Joining peer contacts the server with his public key
 - Server validates peer somehow
 - Server issues a certificate with a random peer-id
- This makes the attack online
 - Even if no authentication is performed, you need a lot of queries to the server
 - If you have user authentication, then you only get one query

A quote from our charter

The initial work will assume the existence of some enrollment process that provides a unique user name, credentials, and an initial set of bootstrap nodes if that is required by the protocols. Developing a non-centralized enrollment process is not in scope.