SMF-06 Update draft-ietf-manet-smf-06

Joe Macker IETF 70 Vancouver, BC, CA

Background Refresh

• Submission Intent is EXP initially

• Reason: Encourage more experimentation of use cases and modes of operation

 Present prototype implementations are running in simulation, emulation, and working networks

SMF-05 -> 06

- More extensive changes than anticipated at last meeting
 - Editor and others felt that was necessary
 - Many comments integrated from list discussions
 - Other issues raised during redesign
 - Added significant new material
 - Removed a lot of non-specification information
 - Actual overall page growth was about +1
- Major change areas
 - DPD Details
 - CDS Detailed added
 - TLVs added

Duplicate Packet Detection Changes

- Two fundamental DPD modes remain H-DPD and I-DPD
 - Hash-based H-DPD
 - Explicit identifier I-DPD
- Overall Changes
 - S-DPD renamed to I-DPD: identification based
 - Mitigate sequence-based security vulnerabilities
 - Support native methods (IPv4 ID randomization scenarios,etc)
 - Added support for IPv4 and IPv6 fragmentation and revised IPSEC discussions
 - Added identification type tables and processing rules for implementation guidance
 - Modified writeup but optional hash mode remains largely as described in -05
- IPv4
 - Removed IP header id field mucking
 - Also I-DPD does not assume sequence-based progression of id space
- Added recommended solutions to deal with certain security threats

IPv6 Processing Rules

IPv6 I-DPD Processing Rules

IPv6 Fragment Header	IPv6 IPSEC Header	IPv6 I-DPD Header	SMF IPv6 I-DPD Mode Actior
Present	+ * 	+ * 	Use Fragment Header I-DPD Check and Process for Forwarding
Not Present	 Present 	 * 	Use IPSEC Header I-DPD Check and Process for Forwarding
Present	 * 	 Present	 Invalid, do not Forward
Not Present	 Present	 Present	 Invalid, do not Forward
Not Present	 Not Present 	 Not Present	 Add I-DPD Header,and Process for Forwarding
Not Present	 Not Present	 Present 	 Use I-DPD Header Check and Process for Forwarding

IPv4 Processing Rules

IPv4 I-DPD Processing Rules

df	m£	fragment offset	IPSEC	IPv4 I-DPD Action
1	1	*	*	Invalid, Do Not Forward
1	0	nonzero	*	Invalid, Do Not Forward
*	0	zero	not Present	Tuple I-DPD Check and Process for Forwarding
*	0	zero	Present	IPSEC enhanced Tuple I-DPD Check and Process for Forwarding
0	0	nonzero	*	Extended Fragment Offset Tuple I-DPD Check and Process for Forwarding
0	1 	zero or nonzero	*	Extended Fragment Offset Tuple I-DPD Check and Process for Forwarding

Relay Set Updates

 Added section in document to specify TLVs related to CDS operation in an NHDP mode

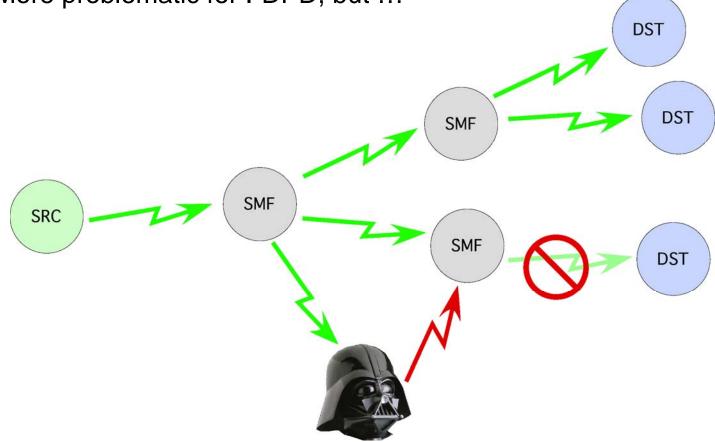
 Revised Appendices describing candidate CDS algorithms

TLV Definitions

- SMF Relay Algorithm ID TLV
 - Identifier for Relay Algorithm type in use

Value	Algorithm
0	S-MPR
1	E-CDS
2	MPR-CDS
3-127	Reserved for Future Assignment
128-255	Experimental Space

- Router Priority TLV
 - Priority values what can be used in CDS election process
 - 1-hop and 2-hop variant defined

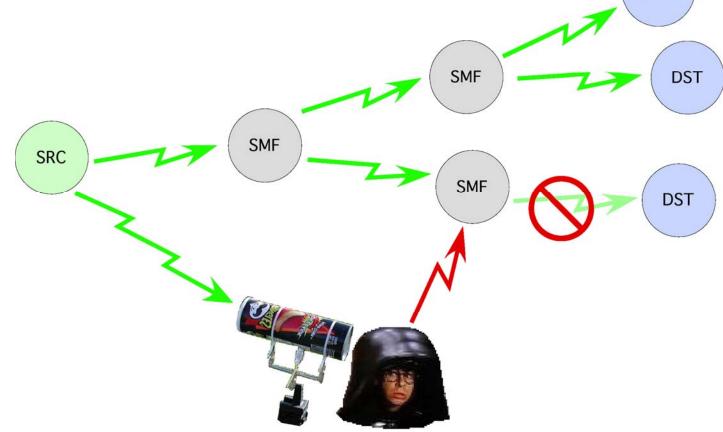

SMF Security Issues

- SMF reliance on Duplicate Packet Detection can make it subject to some denial-of-service attacks
- The concern is low-cost, high-payoff attacks that deny forwarding of valid packet flows
- Note this does <u>not</u> address the issue of malicious packet "spamming" or spoofing

Evil Pre-Play Attack

• Malicious user monitors a packet flow and "pre-plays" or spoofs packets with predictable DPD identifier that results in valid packets being considered "duplicate".

More problematic for I-DPD, but ...



Possible Solutions to DPD Pre-play Attack

- Cryptographically-strong hash algorithm for H-DPD
 - May be computationally complex
 - No HAV possible for IPv4 or IPSEC flows anyway
- "Internal Hash" used in conjunction with I-DPD
 - Lower complexity hash algorithm may suffice.
 - May also "strengthen" IPv4 ID field use for I-DPD

More Evil Pre-play Attack using a "Wormhole"

- Malicious user previews incoming packets, and preplays copy with reduced TTL.
 - Problematic for I-DPD and H-DPD and internal hash.

DST

Candidate Solution to "Wormhole" Pre-play Attack

- Keep TTL/ Hop Limit of forwarded packets with DPD table state
- If a duplicate packet arrives with a <u>larger</u> TTL than the previously forwarded version, forward the duplicate and update TTL in DPD table
- There may some topology cases when this "solution" may temporarily cause unnecessary duplicates, but this is expected to be exceptional.