

Summary of draft-zhang-pcn-performanceevaluation and draft-charny-single-marking

Anna Charny

acharny@cisco.com

Francois Le Faucheur

flefauch@cisco.com

Joy Zhang joyzhang@cisco.com

Vassilis Liatsos

vliatsos@cisco.com

Outline and Scope

Performance comparison of admission control

 Single-marking vs. draft-briscioe-style virtual-queue based admission

New results since last meeting

• Summary of Termination performance

-The same algorithm for draft-brsicoe and single-marking

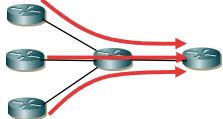
- Other single marking tradeoffs
- Impact of single marking on other drafts
- Note: recent proposals (draft-babiarz- and draft-westberg) need separate comparative evaluation

-Work on alignment of performance criteria and simulation setups in progress

High-level Results: Admission Control (Previously reported)

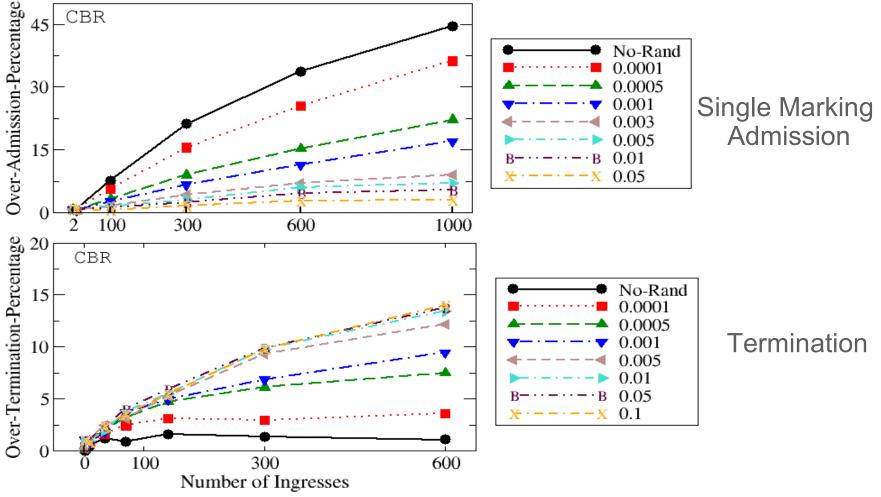
	Virtual Queue	Single Marking Admission
Marking Parameters	 Ramp vs. Step: no difference Upper/Lower Threshold: relatively insensitive 	 Token Bucket Depth: Relatively insensitive
Absolute or Relative RTT Difference	No Effect on bottleneck utilization	No Effect on bottleneck utilization
EWMA weight and CLE	Insensitive	Relatively Insensitive

High-level Results: Admission Control (New in these drafts)

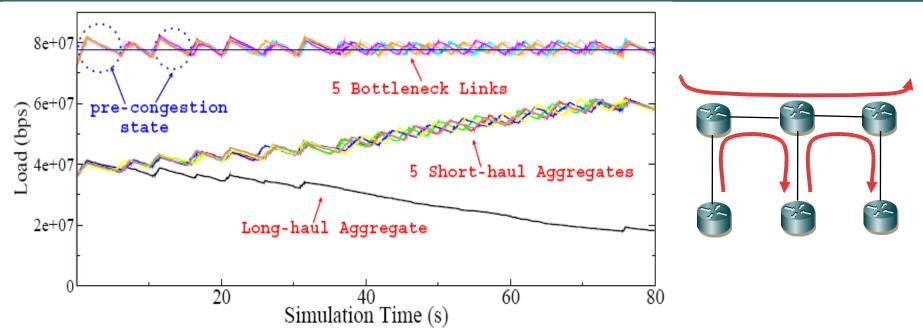

	Virtual Queue	Single Marking Admission
Ingress-Egress Aggregation	No effect	 Over-admission at low aggregation (synchronization effect) Sensitive to bursty flow arrivals
		at low aggregations
Multi- Bottleneck	 No effect at bottleneck Unfair to long-haul aggregates 	 No effect at bottleneck Unfair to long-haul aggregates

High-level Results: Termination Control

Sanity check on SingleLink topology	Worked as Expected
RTT Difference	 Absolute Difference: No effect Relative Difference: Visible over-termination, though not significant
Multi- Bottlenecks	Worked as Expected, long-haul aggregates are more affected
Ingress-Egress Aggregation	Visible over-termination at low aggregation (synchronization)


Marking Synchronization

- Cause: for periodic traffic and certain parameter combinations marking is not well distributed among flows sharing the bottleneck
 - some flows are always marked and some are never marked
 - most relevant for CBR, but visible for near-CBR portions of other traffic types
- Relevant only to excess-rate token bucket marking/metering when ingress-egress aggregation is low
 - Detrimental to excess-rate admission: overadmission
 - Beneficial to termination: less over-termination than theoretical worst case


Is it a simulation artifact?

• Probably Not!

^{© 2005} Cisco Systems, Inc. All rights reserved.

Multi-Bottleneck Admission Unfairness to long-haul flows (Beat-Down Effect)

Common problem for Single-Marking and VQ admission

 is a known property of many MBACs and likely to be a problem for all other admission control proposals

- Is probably of limited practical worry
 - for its effect to be significant needs large demand overload of long duration
 - overload is not large under "normal" conditions
 - in exceptional condition utilization control is more important than fairness

Conclusions of Performance Evaluation

Admission

 At reasonable ingress-egress aggregations (~10 flows or more) performance of both schemes is comparable

At low ingress-egress aggregation single marking performance degrades

- over-admission
- sensitivity to call arrival assumptions
- Both schemes unfair to long-haul flows for Multi-Bottleneck
- Termination
 - Performs as advertised in most scenarios
 - Occasional over-termination but typically tolerable

Single Marking Tradeoffs

- Pros (or why we may want single marking)
 - Single codepoint

One metering/marking scheme in the forwarding path of core equipment

Easy (easier?) deployment path

Can be viewed as an intermediate step for dual-marking

• Cons (or why we should not do just single marking):

some configuration restrictions

unclear how to do anti-cheating in multi-domain case

lower accuracy in the multipath case

some traffic engineering tradeoffs

some performance tradeoffs at very low ingress-egress aggregation levels

Impact on PCN Architecture and Encoding Documents

Architecture

No changes to architecture required in the core Addition of a single configuration parameter at the edges already planned for inclusion in the architecture draft Proposed optional renaming of marking-related terms

Encoding

Any encoding choice suitable for dual marking works for single-marking

Allows additional encoding options

already in the current encoding draft

What Next?

- WG needs to decide whether single-marking needs to be allowed/accomodated in various WG documents.
 We argue – YES!
- This is part of more general decisions: which/how many of the proposed approaches should be chosen?

Need definition/performance criteria to aid the decision process (work in progress)

 Smaller decision: should naming of the marking be associated with function (admission/termination) or semantics (excess rate/queue threshold/excess-rateproportional/other). We argue naming should reflect semantics to help interoperability if more than one marking algorithm can support a given function

CISCO SYSTEMS

Relationship to Other PCN Proposals

Core functionality

a subset of core functionality needed for draft-brisoe

a special case of core functionality required for termination of draft-babiarz

coexistence with draft-westberg to be understood

Edge functionality

a trivial superset of the edge functionality of draft-briscoe

differs substantially from edge functionality of draft-babiarz and draft-westberg