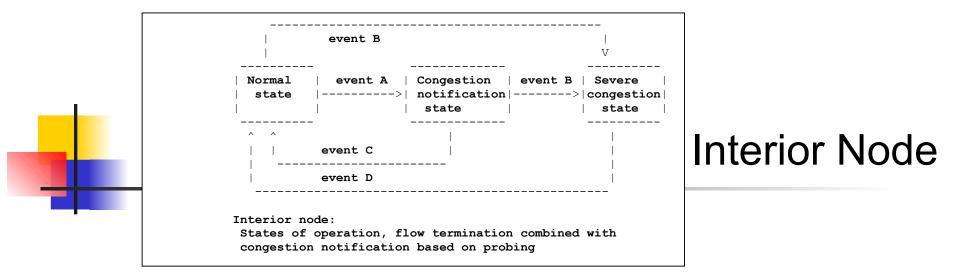
## LC-PCN – The Load Control PCN solution

draft-westberg-pcn-load-control-00.txt

Lars Westberg, Attila Bader, David Partain, Georgios Karagiannis


## Outline

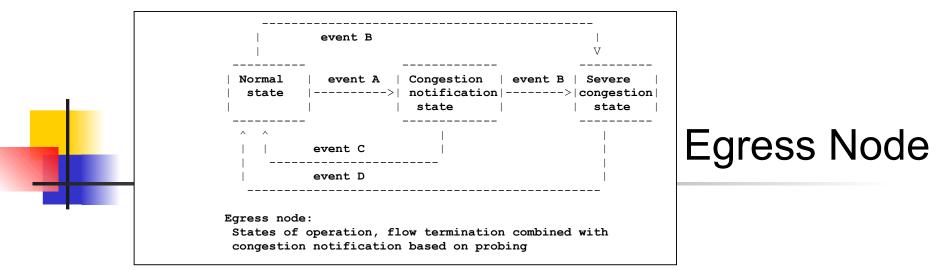
- Overview of LC-PCN solution
- Comparison with other PCN schemes
- Conclusions and next steps

- Applied in a PCN domain and used for unidirectional and bidirectional flows
- Supports admission control (based on probing), flow termination and ECMP handling during admission control and flow termination

#### Diffserv configuration:

- Interior: Meter, Marking Action, Packet Classification:
  - Marked excess rate = (Metered excess rate / N), where N >1 and same in whole PCN domain Configuration
- Egress: Identifies probe packets and measures excess rate and defines which new flows should be rejected and which ongoing should be selected for termination
- Ingress generates probe packets and uses information from egress to reject/admit the new flow and to stop selected ongoing flows




- Normal state: no congestion
- Severe congestion state = Flow Termination (FT) state
- Congestion notification state = Admission control (AC) state

Events when one encoding state used for admission control and flow termination

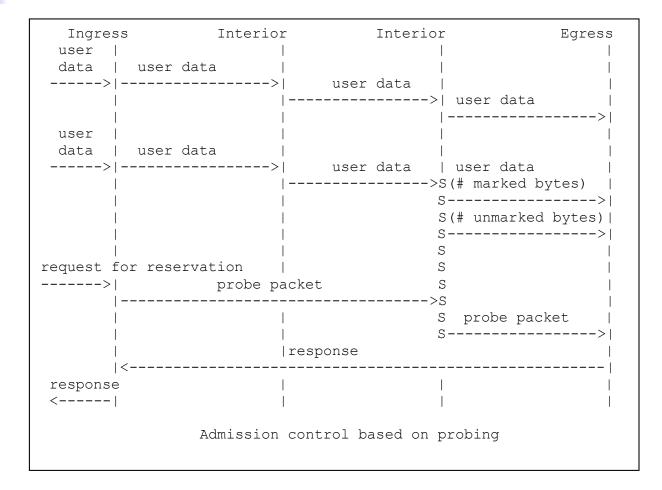
 Event A: Measured Rate per PHB (MR) > congestion notification rate (i.e., configured admissible rate (C-A-R))

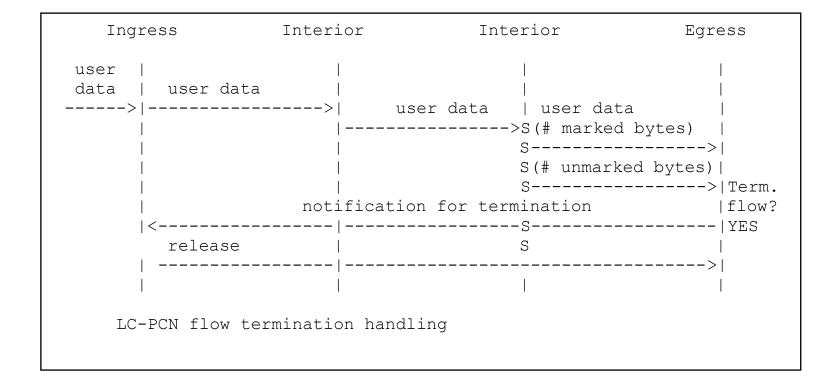
("encoded DSCP" rate = 1/N \* excess rate (rate above C-A-R))

- Event B: MR > severe congestion detection (i.e., congestion termination rate: C-T-R) ("encoded DSCP" rate = 1/N \* excess rate (rate above C-T-R))
- Event C: MR  $\leq$  C-A-R
- Event D: MR  $\leq$  severe congestion restoration rate (C-T-R)
- Event E: (same as event D) but not in the figure and only used when two encoding states are used for AC and FT states



- Normal state: no congestion
- Severe congestion state = Flow Termination (FT) state
- Congestion notification state = Admission control (AC) state


Events when one encoding state used for admission control and flow termination


• Event A: (MRE > C-A-R) AND (MRE  $\leq$  C-T-R)

where, MRE = Measured rate of "encoded DSCP" \* N, C-A-R = congestion notification rate,

C-T-R = severe congestion detection

- Event B: MRE > C-T-R
- Event C: MRE  $\leq$  C-A-R
- Event D: MRE  $\leq$  C-T-R
- Event E: (same as event D) but not in the figure and only used when two encoding states are used for AC and FT states





# Comparison with other PCN schemes

|                            | LC-PCN                                                                                           | CL-PHB                                                                                                                    | Single Marking                                                                                                                             | 3SM                                                                                                                                                                                                     |
|----------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PCN<br>features            | NC, AC, FT, ECMP-AC,<br>ECMP-FT<br>(measurements per byte)                                       | NC, AC, FT                                                                                                                | NC, AC, FT                                                                                                                                 | NC, AC, FT, ECMP-<br>AC, ECMP-FT                                                                                                                                                                        |
| Operation<br>at<br>Ingress | AC:<br>Generate probes and reject<br>if negative notification<br>FT:<br>Terminate selected flows | AC: CLE > C-A-R =><br>reject<br>FT:<br>Termination BW<br>(TBW)=<br>Input load –SAR<br>Terminate flows<br>according to TBW | AC: same as CL-<br>PHB<br><u>FT:</u><br>SPR = u* SAR<br>Termination BW<br>(TBW)=<br>Input load –SPR<br>Terminate flows<br>according to TBW | <u>AC:</u> Either due to<br>negative notification<br>or generate probes<br>and reject if<br>negative probe<br>notification<br><u>FT:</u> If S = 0, same<br>as CL-PHB<br>If S>0 =><br>terminate selected |
|                            |                                                                                                  |                                                                                                                           |                                                                                                                                            | TIOWS                                                                                                                                                                                                   |

- NC = Not congested, AC = Admission Control, FT = Flow Termination
- ECMP-AC = ECMP solution used during AC, ECMP-TC = ECMP used during FT
- CLE = Congestion Level Estimation, SAR = Sustainable Admission Rate, SPR = Sustainable Preemption Rate

# Comparison with other PCN schemes

|             | LC-PCN                                                                                                                                                                                                                                                                                              | CL-PHB                                                                                                                       | Single Marking                                                                                                                  | 3SM                                                                                                                                                                                     |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| INTERIOR    | Option 1 (two encodings):<br>MR>C-A-R=>AM<br>MR>C-T-R=>TM<br>Option 2 (one encoding):<br>MR>C-A-R=>TM<br>MR>C-T-R=>TM<br>TM= 1/N Excess MR<br>(applied when MR even above Maximum<br>Capacity)                                                                                                      | MR>C-A-R=>AM<br>MR>C-T-R=>TM<br>(applied when MR<br>not above Maximum<br>capacity)                                           | MR>C-A-R=>AM<br>(applied when MR<br>not above<br>Maximum capacity)                                                              | MR>C-A-R=>AM<br>MR>C-T-R=>TM<br>(applied when MR<br>not above Maximum<br>capacity)                                                                                                      |
| E G R E S S | Option 1 (two encodings):<br><u>AC</u> : MRE-AC = AM<br><u>FT</u> : TBW = TM*N: (MRE-TM> C-T-R)<br><u>Option 2 (one encoding):</u><br><u>AC</u> : MRE-AC=TM*N<br>reject: probe marked+MRE-AC>C-A-R<br><u>FT</u> :TBW=TM*N: (MRE-TM> C-T-R)<br>Select flows according to TBW, send<br>TBW to ingress | <u>AC:</u><br>CLE=(AM+TM)/total<br>Send CLE to ingress<br><u>FT:</u><br>SAR= rate<br>unmarked packets<br>Send SAR to ingress | <u>AC:</u><br>CLE= AM/total<br>Send CLE to<br>ingress<br><u>FT:</u><br>SAR = rate<br>unmarked packets<br>Send SAR to<br>ingress | AC: Reject either<br>MRE-AC>C-A-R or<br>probe marked. Send<br>notification to<br>ingress<br><u>FT:</u> If S= 0, see CL-<br>PHB; If S>0 =><br>Select all TM marked<br>flows to terminate |

### Conclusions and next steps

#### LC-PCN at ingress:

- Generate probe packets and and reject if probe is marked, accept otherwise
- Terminates selected flows
- LC-PCN at interior:
  - packets TM marked according to excess rate
  - All packets that are not TM marked are Affected Marked (used for ECMP)
  - Probing used to solve ECMP during AC
  - Similar to 3SM and single marking
- LC-PCN at Egress:
  - Excess rate measurements and probing is used to admit a reservation request or not
  - Selects only (TM and Affected Marked) marked flows to be terminated according to the calculated termination bandwidth (TBW)
    - Solves ECMP problem
  - similar to 3SM when S>0 and when S the same in whole PCN domain

### Conclusions and next steps

Evaluate if and how the LC-PCN scheme can be combined/integrated with the other PCN WG schemes