
What should Spec
Writers Know about

IPv6 ?
Jordi Palet

(jordi.palet@consulintel.es)
EDU-Team

8/9/07 2

Why This Class ?
• At the time being, there is no BCP or

IETF-wide policy that requires IPv6
support in every new protocol defined
for IPv4

• However, omitting IPv6 with no
explanation is not generally accepted by
the IESG

8/9/07 3

Actual Situation
• Many documents come to the IESG

with IPv6-related issues
– Mistakes in the usage of IPv6
– Failure to note differences from IPv4
– Ignoring IPv6 entirely, without explanation

8/9/07 4

Is It Difficult ?
• Adding support for IPv6 usually ranges from

trivial to simple
– There may be some more complicated cases

• In general, there is no change in the logic of
any upper layer protocol, except for those
implied by the socket API differences
– Typically no need for conceptual redesigns at layer

4 and above
• So … there is no excuse for not doing it !

8/9/07 5

Contents
• IPv6 Specification (RFC2460)
• Addressing Architecture
• IP Layer Issues
• Transport Issues
• Security Issues
• Network Management
• DNS Issues
• Application Issues
• Transition Issues
• Other Issues

8/9/07 6

IPv6 Specification
(RFC2460)

8/9/07 7

Changes from IPv4 to IPv6
• Expanded Addressing Capabilities
• Header Format Simplification
• Improved Support for Extensions and Options
• Flow Labeling Capability
• Authentication and Privacy Capabilities

8/9/07 8

IPv4 Header Format

• 20 Bytes + Options

bits: 4 8 16 20 32

Version H. Length TOS Total Length

Identification Flags Fragment Offset

Time To Live Protocol Header Checksum

32 bits Source Address

32 bits Destination Address

Options

Modified Field
Deleted Field

8/9/07 9

IPv6 Header Format

• From 12 to 8 Fields (40 bytes)

– Avoid checksum redundancy
– Fragmentation end to end

bits: 4 12 16 24 32

Version Class of Traffic Flow Label

Payload Length Next Header Hop Limit

128 bits Source Address

Dirección
Destino

De

128 bits Destination Address

8/9/07 10

Summary of Header Changes
• 40 bytes

• Address increased from 32 to 128 bits

• Fragmentation and options fields removed from base header

• Header checksum removed

• Header length is only payload (because fixed length header)
– Include length count of present extension headers

• New Flow Label field

• TOS -> Traffic Class

• Protocol -> Next Header (extension headers)

• Time To Live -> Hop Limit

• Alignment changed to 64 bits

8/9/07 11

Extension Headers
• “Next Header” Field

IPv6 Header
Next Header =

TCP
TCP Header DATA

IPv6 Header
Next Header =

 Routing

Routing Header
Next Header =

TCP
TCP Header DATA

IPv6 Header
Next Header =

 Security

Security Header
Next Header =
Fragmentation

Fragmentation
Header

Next Header =TCP
DATATCP Header

8/9/07 12

Extension Headers Goodies
• Processed Only by Destination Node

– Exception: Hop-by-Hop Options Header

• No more “40 byte limit” on options (IPv4)

• Extension Headers defined currently (to be used in the following order):
– Hop-by-Hop Options (0)

– Destination Options (60) / Routing (43)

– Fragment (44)

– Authentication (RFC4302, next header = 51)

– Encapsulating Security Payload (RFC4303, next header = 50)

– Destination Options (60)

– Mobility Header (135)

– No next header (59)

• TCP (6), UDP (17), ICMPv6 (58)

8/9/07 13

Unrecognized Headers
• In case of an unrecognized Next

Header value in the current header, the
node, should discard the packet and
send an ICMP Parameter Problem
message to the source of the packet

8/9/07 14

Addressing Architecture

8/9/07 15

Addressing Architecture
• Not just bigger addresses, a new address

architecture …
• Note that IP addresses aren’t 32-bit node

identifiers
• See RFC4291 “IP Version 6 Addressing

Architecture” for complete info

8/9/07 16

IPv4 vs. IPv6

•All interfaces are required to have at least one
Link-Local unicast address and may have multiple
IPv6 addresses (any type/scope)

•Scoped Unicast Addressing
–Link-local vs. Global (site-local is deprecated)

–128 bits•Address Length:
–32 bits

•No IPv6 broadcast address:
–Use All-Nodes Multicast address instead

•Broadcast

•Loopback:
–::1

•Loopback:
–127.0.0.1

•Hexadecimal notation
–2001:0DB8:0003:0004:0005:0006:0007:0008
–2001:DB8:3:4:5:6:7:8
–2001:DB8::1
–FF02::1

•Literal representation
using decimal notation

–10.10.10.1

IPv6IPv4

8/9/07 17

Literal Representation IPv4/IPv6
• Alternative form when dealing with

mixed environments
– IPv6 addresses with embedded IPv4

addresses
• Use IPv4-Mapped IPv6 Address, IPv4-

compatible address is deprecated
• ::FFFF:10.0.0.1

8/9/07 18

Addressing Model
• IPv6 addresses of all types are assigned to

interfaces, not nodes. An IPv6 unicast address refers
to a single interface. Since each interface belongs to
a single node, any of that node's interfaces' unicast
addresses may be used as an identifier for the node.

• All interfaces are required to have at least one Link-
Local unicast address.

• A single interface may also have multiple IPv6
addresses of any type (unicast, anycast, and
multicast) or scope.

• A unicast address or a set of unicast addresses may
be assigned to multiple physical interfaces if the
implementation treats the multiple physical interfaces
as one interface when presenting it to the internet
layer.

8/9/07 19

IPv4/IPv6 Similarities
• A subnet prefix is associated with one

link. Multiple subnet prefixes may be
assigned to the same link.

• Literal representation of address
prefixes follow CIDR notation
– ipv6-address/prefix-length (decimal)

• 2001:DB8::1/60

8/9/07 20

Control Plane IPv4 vs. IPv6

IPv6

Ethernet

ICMPv6

ND MLD

Mult icast

IPv4

ICMP IGMPv2

ARP

Ethernet

Broadcast Mult icast

8/9/07 21

Address Types

• Unicast (one-to-one)
– global
– link-local
– site-local (deprecated)
– Unique Local (ULA)
– IPv4-mapped
– IPv4-compatible (deprecated)

• Multicast (one-to-many)
• Anycast (one-to-nearest)
• Reserved

8/9/07 22

Address Type Identification

FEF0::/101111 1110 11Site-Local Unicast
(deprecated)

::/9600…0 (96 bits)IPv4-compatible
(deprecated)

::FFFF:IPv4/12800…0:1111 1111:IPv4IPv4-mapped
(everything else)Global Unicast

FC00::/71111 110ULA
FE80::/101111 1110 10Link-Local Unicast
FF00::/81111 1111Multicast
::1/12800…1 (128 bits)Loopback
::/12800…0 (128 bits)Unspecified

IPv6
Notation

Binary PrefixAddress Type

Note: Anycast addresses allocated from unicast prefixes

8/9/07 23

Site
Topology
(16 bits)

Interface
Identifier
(64 bits)

Public
Topology
(45 bits)

Interface IDSLA*NLA*TLA001

Aggregatable Global Unicast
Addresses (RFC2374)

(Deprecated)

• TLA = Top-Level Aggregator
NLA* = Next-Level Aggregator(s)
SLA* = Site-Level Aggregator(s)

• TLAs may be assigned to ISPs and IX

8/9/07 24

Sub-network
ID

(16 bits)

Interface ID
(64 bits)

Interface ID001

Global Unicast Addresses
(RFC3587)

• The global routing prefix is a value assigned to a zone (site, a set
of subnetworks/links)

– It has been designed as an hierarchical structure from the Global
Routing perspective

• The subnetwork ID, identifies a subnetwork within a site
– Has been designed to be an hierarchical structure from the site
administrator perspective

• The Interface ID is build following the EUI-64 format

subnet IDGlob. Rout. prefix

Global Routing
Prefix

(45 bits)

8/9/07 25

Sub-network
ID

(16 bits)

Interface ID
(64 bits)

Interface ID001

Global Unicast Addresses in
Production Networks

• LIRs receive by default /32
– Production addresses today are from prefixes 2001, 2003, 2400,
2800, etc.
– Can request for more if justified

• /48 used only within the LIR network, with some exceptions for
critical infrastructures

• /48 to /128 is delegated to end users
– Recommendations following RFC3177 and (some) current policies

• /48 general case, /47 if justified for bigger networks
• /64 if only and only one network is required
• /128 if it is sure that only and only one device is going to be connected

subnet IDGlob. Rout. prefix

Global Routing
Prefix

(45 bits)

8/9/07 26

Global Unicast Addresses
for the 6Bone

• 6Bone: experimental IPv6 network used for testing
only

• TLA 1FFE (hex) assigned to the 6Bone
– thus, 6Bone addresses start with 3FFE:
– (binary 001 + 1 1111 1111 1110)

• Next 12 bits hold a “pseudo-TLA” (pTLA)
– thus, each 6Bone pseudo-ISP gets a /28 prefix

• Not to be used for production IPv6 service

Until 06/06/06 !

16 64 bits12

interface IDSLA*pTLATLA001 NLA*

2013

8/9/07 27

Link-local addresses for use during auto-
configuration and when no routers are present:

Site-local addresses for independence from
changes of TLA / NLA* (deprecated !):

Link-Local & Site-Local Unicast
Addresses

1111111010 0 interface ID

1111111011 0 interface IDSLA*

8/9/07 28

Interface IDs

The lowest-order 64-bit field of unicast
addresses may be assigned in several different
ways:

– auto-configured from a 48-bit MAC address (e.g., Ethernet
address), expanded into a 64-bit EUI-64

– assigned via DHCP
– manually configured
– auto-generated pseudo-random number

(to counter some privacy concerns)
– possibly other methods in the future

8/9/07 29

IPv6 in Ethernet

48 bits 48 bits 16 bits

Ethernet Destination Address Ethernet Source Address 1000011011011101
(86DD)

IPv6 Header and Data

8/9/07 30

EUI-64

8/9/07 31

Some Special-Purpose Unicast
Addresses

• The unspecified address, used as a
placeholder when no address is available:

0:0:0:0:0:0:0:0

• The loopback address, for sending packets to
self:

0:0:0:0:0:0:0:1

8/9/07 32

Required Anycast Address
• The Subnet-Router anycast address is

predefined.
• Format:

Subnet prefix (n bits) + 0…0 (128-n)
• The "subnet prefix" in an anycast address is

the prefix that identifies a specific link. This
anycast address is syntactically the same as
a unicast address for an interface on the link
with the interface identifier set to zero.

8/9/07 33

Multicast Addresses

• Low-order flag indicates permanent/transient group
• Scope field: 1 - node local

2 - link-local
5 - site-local
8 - organization-local
B - community-local
E - global
(all other values reserved)

4 112 bits8

group IDscopeflags11111111

4
x R P T

RFC3513
RFC3306
RFC3956

RFC4291

8/9/07 34

Reserved Multicast Addresses (I)
• Node-Local Scope

– FF01::1 All Nodes Address
– FF01::2 All Routers Address

• Link-Local Scope
– FF02::1 All Nodes Address
– FF02::2 All Routers Address
– FF02::4 DVMRP Routers
– FF02::5 OSPFIGP
– FF02::6 OSPFIGP Designated Routers
– FF02::9 RIP Routers
– FF02::B Mobile-Agents
– FF02::D All PIM Routers
– FF02::1:2 All-DHCP-agents
– FF02::1:FFXX:XXXX Solicited-Node Address

8/9/07 35

Reserved Multicast Addresses (II)
• Site-Local Scope

– FF05::2 All Routers Address
– FF05::1:3 All-DHCP-servers
– FF05::1:4 All-DHCP-relays

• Variable Scope Multicast Addresses
– FF0X::101 Network Time Protocol (NTP)
– FF0X::129 Gatekeeper
– FF0X::2:0000-FF0X::2:7FFD Multimedia Conference Calls
– FF0X::2:7FFE SAPv1 Announcements
– FF0X::2:8000-FF0X::2:FFFFSAP Dynamic Assignments

8/9/07 36

Important Multicast Addresses

• FF01::1, FF02::1 All-nodes
• FF01::2, FF02::2, FF05::2 All routers

• Solicited Node (SN) address from a unicast one
– For the address that finish with “XY:ZTUV”
– the SN is FF02::1:FFXY:ZTUV

• Every IPv6 node must join SN for all its unicast
and anycast addresses, and to “all-nodes”

8/9/07 37

Multicast Listener Discovery

• MLD (RFC2710) enables each IPv6 router to
learn which multicast addresses have
listeners on each of its directly attached links

• This is a mandatory function in IPv6 nodes
• Is used instead of IGMP (as in IPv4)
• Current version MLDv2: RFC3810 which

interoperates with MLDv1
• It supports source-filtering but it requires PIM-

SSM

8/9/07 38

Node Required Addresses
• A host is required to recognize the following addresses as

identifying itself:
– Its required Link-Local address for each interface
– Any additional Unicast and Anycast addresses that have been

configured for the node’s interfaces (manually or automatically)
– The loopback address
– The All-Nodes multicast address
– The Solicited-Node multicast address for each of its unicast and

anycast addresses
– Multicast addresses of all other groups to which the node belongs

• A router, in addition, is required to recognize:
– The Subnet-Router Anycast addresses for all the interfaces for

which it is configured to act as a router
– All other Anycast addresses with which the router has been

configured
– The All-Routers multicast addresses

8/9/07 39

Unique Local Addresses
• IPv6 adds support for unique local addresses (ULAs)

in RFC4193.
– Globally, well-known, unique prefix

• Easy filtering at site boundaries
– Probabilistically unique, so a node can be on more than one

local network
– Not a direct map to IPv4 net 10 addresses
– Useful for local or private network addressing

• They are not expected to be routable on the Global Internet
• They are routable inside of a more limited area such as a site
• They may also be routed between a limited set of sites
• If accidentally leaked (routing or DNS), there is no conflict with

any other addresses
– In practice, applications may treat these addresses like

global scoped ones
– Locally-Assigned Local addresses

• vs Centrally-Assigned Local addresses

8/9/07 40

IPv6 ULA Format

• FC00::/7 Prefix identifies the Local IPv6 unicast addresses
• L = 1 if the prefix is locally assigned
• L = 0 may be defined in the future (ULA-central)
• ULA are created using a pseudo-randomly allocated global

ID
– This ensures that there is not any relationship between allocations

and clarifies that these prefixes are not intended to be routed
globally

16 bits 64 bits

interface IDPrefix subnet IDglobal ID

40 bits

L

7 bits 1

8/9/07 41

Privacy Extensions (RFC3041)
• Extension to IPv6 stateless address autoconfiguration, to allow

nodes to generate global-scope (temporary) addresses from
interface identifiers that change over time providing some
privacy degree

• Changing addresses have implications for transport protocols
which may rely globally unique interface identifiers

• Makes more complex debugging of problems
• Not associated to a DNS name, so invalidate the usage of DNS

PTR queries to grant access to some services
• For implementations, it is difficult to keep track which addresses

are being used by upper layers:
– For TCP connections, info available in control blocks
– For UDP-based applications, it may be the case that only the

applications know it
• Decision about using public or temporary addresses, is typically

only made by applications

8/9/07 42

IP Layer Issues

8/9/07 43

Packet Size Issues
• IPv6 requires lower layers to support an MTU

of 1280 bytes (as opposed to 536 in IPv4)
• It is recommended that those links with a

configurable MTU (such as PPP) use 1500 or
greater (to accommodate possible
encapsulations)

• Path MTU discovery (RFC1981) it is strongly
recommended

• Support for IPv6 Jumbograms (RFC2675)

8/9/07 44

Fragmentation Issues
• IPv6 routers do not fragment packets

– Path MTU discovery is mandatory
– All fragmentation happens at the source

• Application fragmentation preferred
versus IPv6 Fragment header usage

8/9/07 45

ND vs. ARP
• IPv6 L2 address resolution is performed

using Neighbor Discovery (ND,
RFC2461) instead of ARP
– ND is ICMP-based
– Uses Solicited-Node Multicast addresses
– Requires link-layer multicast

• Some link types (NBMA) need alternatives
– Combines address resolution with host

autoconfiguration and reachability
detection

8/9/07 46

ND Features
• Router Discovery is part of the base protocols set
• Router advertisements:

– carry link-layer addresses
– carry prefixes for a link
– enable Address Autoconfiguration

• Routers can advertise and MTU for hosts to use on the link
• Redirects contain the link-layer address of the new first hop
• Multiple prefixes can be associated with the same link
• Recipient of an IPv6 redirect assumes that the next-hop is on-

link
• Self-contained Neighbor Unreachability Detection
• Detects half-link failures
• Facilitates renumbering
• Immune to off-link ND messages
• More media-independent than ARP (allows using IPsec)

8/9/07 47

DHCPv6 (RFC3315/RFC4361)
• DHCPv6 is a client-server-based UDP protocol designed to reduce

the IPv6 nodes management cost in those environments whereby
control of IPv6 address allocation is required and/or more control
than the one provided by the stateless mechanism about the
provision of network parameters is needed

• DHCP reduces the cost of ownership by centralizing the
management of network resources such as IP addresses, routing
information, OS installation information, directory service information,
and other such information on a few DHCP servers, rather than
distributing such information in local configuration files among each
network node

• DHCPv6 provides a superset of features, and benefits from the
additional features of IPv6 and freedom from BOOTP -backward
compatibility constraints

8/9/07 48

DHCPv6 Details
• UDP ports are

– Clients listens to 546
– Server and relays listen to 547

• Address for DHCPv6 relay agent and servers
– FF02::1:2 (link local scope)
– FF05::1:3 (site scope only for servers)

• DHCP messages
– SOLICIT
– ADVERTISE
– REQUES
– CONFIRM
– RENEW
– REBIND
– REPLY
– RELEASE
– DECLINE
– RECONFIGURE
– INFORMATION-REQUEST
– RELAY-FORW
– RELAY-REPL

• Each message can carry one or more DHCP options
– Domain-list
– DNS-server
– IA-NA, etc.

• DHCP Unique Identifier (DUID)
– servers use DUIDs to identify clients for the selection of configuration parameters and in the association of IAs

with clients
– clients use DUIDs to identify a server in messages where a server needs to be identified

8/9/07 49

Basic DHCPv6 Example
client server

SOLICIT (FF02::1:2)

ADVERTISE

REQUEST/RENEW

REPLY

client server

SOLICIT (FF02::1:2)

ADVERTISE

relay

REQUEST/RENEW

REPLY

8/9/07 50

DHCPv6-PD (RFC3633)
• It provides an automated mechanism for the

delegation of IPv6 prefixes to authorized requesting
routers

• Delegating router does not require knowledge about
the topology of the networks to which the requesting
router is attached

• Delegating router does not require other information
aside from the identity of the requesting router to
choose a prefix for delegation
– for example a ISP to assign a prefix to a CPE device acting

as a router

8/9/07 51

DHCPv6 Details
• Requesting router (RR) authentication is needed
• Profile for a RR could be stored in AAA server
• Delegated prefix could be gotten from either:

– the customer’s profile stored in the AAA server
– prefix pool

• The delegated prefixes have lifetime as IPv6 address
in DHCPv6

• DHCPv6-PD doesn’t provide a way to propagate the
delegated prefix through the customer’s network
– ::/64 prefixes form the delegated prefix are assigned in the

RR according to the configured policy
• DHCPv6 relay agents could also be used as in

DHCPv6

8/9/07 52

Network architecture for DHCPv6-PD

ISP

delegating
router

requesting
router (CPE)

customer’s
network

RA

RA

prefix delegation

AAA

8/9/07 53

Basic DHCPv6-PD Example

client delegating router

SOLICIT (FF02::1:2, IA-PD)

ADVERTISE

REQUEST/RENEW

REPLY (prefix)

requesting router

Router Advertisement

8/9/07 54

Transport Issues

8/9/07 55

IPv6 Pseudo-Header
• Any transport or other upper-layer protocol

that includes the addresses from the IP
header in its checksum computation must be
modified for use over IPv6, to include the
128-bit IPv6 addresses instead of 32-bit IPv4
addresses.

• A TCP and UDP pseudo-header are
consequently defined for IPv6.

• UDP/IPv6 packets require UDP checksum
computed by the originating node.

• ICMPv6 includes the pseudo-header in its
checksum computation.

8/9/07 56

 Maximum Packet Lifetime
• IPv6 nodes are not required to enforce

maximum packet lifetime.
• Any upper-layer protocol that relies on

the IP layer to limit packet lifetime need
to be upgraded to provide its own
mechanism for detecting and discarding
obsolete packets.

8/9/07 57

Maximum Upper-Layer
Payload Size

• When computing the maximum payload
size available for upper-layer data, an
upper-layer protocol must take into
account the larger size of the IPv6
header versus the IPv4 one.

8/9/07 58

Routing Header Issues
• When an upper-layer protocol responds to a

received packet that include a Routing
header, only can use one of the following:
– Response packet without Routing header
– Response packet with a Routing header NOT

derived by reversing the received Routing header
– Response packet with a Routing header derived

by reversing the received Routing header IF AND
ONLY IF the integrity and authenticity of the
Source Address and Routing header from the
received packet have been verified by the
responder

8/9/07 59

Flow Label
• The 20-bit Flow Label field may be used

by a source to label sequences of
packets for which it request special
handling by the IPv6 routers, such as
non-default QoS or “real-time” service

• The Flow Label value set by the source
must be delivered unchanged to the
destination(s)

• For more info see RFC3697
• More work to be done in this area

8/9/07 60

Security Issues

8/9/07 61

Security
• IPsec (AH and ESP) required in

“complete” IPv6 stacks
• Security features of IPv6 as described

in RFC4302
• IPv6 addressing architecture do not

have additional security implications

8/9/07 62

Secure Neighbor Discovery
(SEND) - RFC3971

• IPv6 nodes use the Neighbor Discovery
Protocol (NDP) to:
– Discover other nodes on the link
– Determine their link-layer addresses to find routers
– Maintain reachability information about the paths to

active neighbors
• NDP is vulnerable to various attacks if it is not

secured
• RFC3971 specifies security mechanisms for

NDP
– Unlike those in the original NDP specifications, these

mechanisms do not use IPsec
– SEND is applicable in environments where physical

security on the link is not assured (such as over
wireless) and attacks on NDP are a concern

8/9/07 63

SEND Elements
• The NDP messages follow the ICMPv6 message format
• An actual NDP message includes

– an NDP message header
• ICMPv6 header
• ND message-specific data

– and zero or more NDP options, which are formatted in the Type-
Length-Value format

• To secure the NDP, a set of new Neighbor Discovery
options is introduced and used to protect NDP messages

• RFC3971 introduces
– SEND’s Neighbor Discovery options
– An authorization delegation discovery process
– An address ownership proof mechanism
– And requirements for the use of these components in NDP

ND Message

ND Message-
specific data

ICMPv6
Header

IPv6 Header
Next Header = 58
(ICMPv6)

ND Message
options

ND Message Header

8/9/07 64

SEND’s Neighbor Discovery
Options

• CGA (Cryptographically Generated Addresses, RFC3972) option, is used to
carry the public key and associated parameters
– CGA are used to make sure that the sender of a Neighbor Discovery message is the

"owner" of the claimed address
– A public-private key pair is generated by all nodes before they can claim an address
– RFC3971 also allows a node to use non-CGAs with certificates that authorize their

use. The details of such use are beyond the scope of this specification and are left for
future work

• RSA (RSA Encryption Standard) Signature option, is used to protect all
messages relating to Neighbor and Router discovery
– Public key signatures protect the integrity of the messages and authenticate the

identity of their sender
– The RSA Signature option allows public key-based signatures to be attached to NDP

messages
• Timestamp and Nonce Options are introduced in order to prevent replay attacks

– The Timestamp option offers replay protection without any previously established state or
sequence numbers. For example, It can be used when Neighbor and Router Discovery messages
are sent in some cases to multicast addresses

– The Nonce option protects the messages used in solicitation-advertisement pairs
• Nonce is an unpredictable random or pseudo-random number generated by a

node and used exactly once. In SEND, nonces are used to assure that a
particular advertisement is linked to the solicitation that triggered it

8/9/07 65

Network Management

8/9/07 66

MIB Textual Conventions
• Internet addresses on devices that connect

multiple zones are not necessarily unique, so
an additional zone index is needed to select
an interface:
– InetAddressIPv6z

• If no zone index is needed then:
– InetAddressIPv6

• To support arbitrary combinations of scoped
Internet addresses, MIB authors should use a
separate InetAddressType object for each
InetAddress object

• RFC4001

8/9/07 67

Textual Convention for IPv6
Flow Label

• Two definitions:
– IPv6FlowLabel
– IPv6FlowLabelOrAny (-1 used as a

wildcard, any value)
• RFC3595

8/9/07 68

DNS Issues

8/9/07 69

DNS Extensions to Support IPv6
• RFC3596 defines:

– A RR type (AAAA) to map a domain name to an
IPv6 address

– A domain to support lookups based on addresses
– Modification of existing queries that perform

additional section processing to locate IPv4
addresses (now do both, IPv4 and IPv6)

• IP protocol version used for the query is
independent of the protocol version of the
RRs (transport vs. contents)

8/9/07 70

IP6.ARPA
• Special domain defined to look up a record

given an IPv6 address, in order to provide a
way of mapping an IPv6 address to a host
name

• An IPv6 address is represented as a name in
the IP6.ARPA domain by a sequence of
nibbles (encoded in reverse order, low-order
nibble first), represented in hexadecimal,
separated by dots with the suffix “.IP6.ARPA”

• Example:
– 2001:db8:1:2:3:4:567:89ab, would be
– b.a.9.8.7.6.5.0.4.0.0.0.3.0.0.0.2.0.0.0.1.0.0.0.8.b.d

.0.1.0.0.2.IP6.ARPA.

8/9/07 71

Modifications to Existing Queries
• All existing query types that perform

type A additional section processing
(such as NS, SRV and MX), must be
redefined to perform both type A and
AAAA additional section processing

• Consequently, a name server must add
any relevant IPv4 and IPv6 addresses
available locally to the additional section
of a response when processing any one
of the above queries

8/9/07 72

Application Issues

8/9/07 73

The Porting Issue
• Network layer change is not transparent

– IPv4 applications need to be modified for IPv6
• Best practice is to turn IPv4 apps into protocol-

independent apps
• Usually not difficult

– Simple apps (e.g. telnet) take only hours to port
• Care should be given to how IPv4 or IPv6

protocols are preferred and selected when both
available
– Apps may need to iterate connection attempts due

to multiple IPv6 addresses available (or both,
IPv4+IPv6)

8/9/07 74

Main Changes From IPv4
• Address Size

– 32 bits (IPv4) to 128 bits (IPv6)
• Implications on “display” of addresses

– Up to 39 characters, even 45 for IPv4-mapped
• API changes

– Address size issues
– Protocol independence

• Dependencies on IP header size
• Dependencies on particular addresses
• STRONG recommendation to use FQDNs rather

than IP addresses
– Also store FQDNs preferred vs. storage of addresses

8/9/07 75

Not All Applications Need to be
Changed

• Many applications don’t talk to the
network directly, but rather use library
functions to carry out those tasks. In
some cases, only the underlining library
needs to be changed

• Examples:
– RPC
– DirectPlay

8/9/07 76

IPv6 APIs
• Basic Socket Interface Extensions for

IPv6 (RFC3493)
• Advanced Sockets Application Program

Interface (API) for IPv6 (RFC3542)

8/9/07 77

Address Storage Issues

• Problem: you can’t store a 128 bit value in a
32 bit space

• Most applications today store and reference
IP addresses as either:
– sockaddrs (good)
– in_addrs (okay)
– ints (bad)

• Storage versus reference

8/9/07 78

Anatomy of a sockaddr

struct sockaddr {

 u_short sa_family; // Address family

 char sa_data[14]; // Address data

};

• The sa_family field contains a value
which indicates which type of address
this is (IPv4, IPv6, etc)

8/9/07 79

sockaddr_in

struct sockaddr_in {

 short sin_family;

 u_short sin_port;

 struct in_addr
sin_addr;

 char sin_zero[8];

};

8/9/07 80

sockaddr_in6
struct sockaddr_in6 {

 short sin6_family; //
AF_INET6

 u_short sin6_port;

 u_long sin6_flowinfo;

 struct in_addr6 sin6_addr;

 u_long sin6_scope_id;

};

8/9/07 81

API Changes

• Most of the socket APIs don’t need to change
– they were originally designed to be protocol
independent, and thus take pointers to
sockaddrs as input or output
– bind, connect, getsockname, getpeername, etc.

• The name resolution APIs are the big
offenders that need to be changed
– gethostbyname, gethostbyaddr

8/9/07 82

New Name Resolution APIs

• getaddrinfo – for finding the addresses and/or
port numbers that corresponds to a given
host name and service

• getnameinfo – for finding the host name
and/or service name that corresponds to a
given address or port number

• Both of these APIs are protocol-independent
– they work for both IPv4 and IPv6

8/9/07 83

Getaddrinfo

int

getaddrinfo(

 IN const char FAR * nodename,

 IN const char FAR * servicename,

 IN const struct addrinfo FAR * hints,

 OUT struct addrinfo FAR * FAR * res

);

8/9/07 84

Anatomy of Addrinfo

typedef struct addrinfo {

 int ai_flags;

 int ai_family; // PF_xxx.

 int ai_socktype; // SOCK_xxx.

 int ai_protocol; // IPPROTO_xxx.

 size_t ai_addrlen;

 char *ai_canonname;

 struct sockaddr *ai_addr;
 struct addrinfo *ai_next;

} ADDRINFO, FAR * LPADDRINFO;

8/9/07 85

Getnameinfo

int

getnameinfo(

 IN const struct sockaddr FAR * sa,

 IN socklen_t salen,

 OUT char FAR * host,

 IN DWORD hostlen,

 OUT char FAR * service,

 IN DWORD servlen,
 IN int flags

);

8/9/07 86

Header Size Dependencies

• Problem: The IPv6 header is 20 bytes
larger than (the minimal) IPv4 header

• Programs that calculate their datagram
payload size by computing MTU – (UDP
header size + IP header size) need to
know that the IP header size has
changed

8/9/07 87

IPv4 Address Dependencies

• Some programs “know” certain addresses
(e.g. loopback = IPv4 address 127.0.0.1)

• Programs whose purpose is to manipulate
addresses (e.g. Network Address Translators,
or NATs) obviously have innate knowledge of
IPv4 addresses

• Only an issue for those sorts of programs

8/9/07 88

IPv6 in Java
• A good example (JDK >1.4/1.5)
• Java hides the dual stack almost

completely

8/9/07 89

Application Aspects of IPv6
Transition (RFC4038)

• The document introduces how to enable IPv6
support in applications running on IPv6 hosts,
and the best strategy to develop IP protocol
support in applications

• Specifies scenarios and aspects of
application transition

• It also proposes guidelines on how to develop
IP version-independent applications during
the transition period

8/9/07 90

Transition Issues

8/9/07 91

Transition / Co-Existence
• A wide range of techniques have been identified

and implemented, basically falling into three
categories:

– Dual-stack techniques, to allow IPv4 and IPv6
to co-exist in the same devices and networks

– Tunneling techniques, to avoid order
dependencies when upgrading hosts, routers,
or regions

– Translation techniques, to allow IPv6-only
devices to communicate with IPv4-only
devices

8/9/07 92

Transition Considerations
• Design for an indefinite period of time of

IPv4-IPv6 co-existence
• RFC4001 is a good example about

doing that

8/9/07 93

Default Address Selection
(RFC3484)

• Algorithms for source and destination address selection
• Specify default behavior for all Internet Protocol version

6 (IPv6) implementations. They do not override choices
made by applications or upper-layer protocols, nor do
they preclude the development of more advanced
mechanisms for address selection

• The two algorithms share a common context, including
an optional mechanism for allowing administrators to
provide policy that can override the default behavior.

• In dual stack implementations, the destination address
selection algorithm can consider both IPv4 and IPv6
addresses -depending on the available source
addresses, the algorithm might prefer IPv6 addresses
over IPv4 addresses, or vice-versa

8/9/07 94

Other Issues

8/9/07 95

IPv6 Documentation Addresses
• Global unicast address prefix reserved

for documentation purposes (see RFC
3849)
– 2001:DB8::/32

8/9/07 96

Literal IPv6 Addresses in URLs
• RFC3986 defines a syntax for IPv6

addresses to be used in browsers, avoiding
confusion with the port separator (:)

• The literal address should be enclosed in "["
and "]" characters

• Example:
– http://[2001:DB8::367]:80/index.html

• Fully Qualified Domain Names (FQDNs)
should be used in preference to IP addresses
whenever possible

• Use of localhost by name abstracts the
difference between IPv4 and IPv6

8/9/07 97

Literal IPv6 Addresses in SMTP
• RFC2821 defines how to use literal

addresses in SMTP, enclosed in square
brackets:
– IPv6-address-literal = “IPv6:” IPv6-addr

• Example:
– [IPv6:2001:db8::1]

8/9/07 98

Useful Web Sites
• http://www.ipv6-to-standard.org
• http://www.ipv6tf.org

8/9/07 99

Acknowledgments
• Edu-Team members who contributed to

produce this class
– Brian Carpenter
– Margaret Wasserman

