
TCP Friendly Rate Control (TFRC):
Protocol Specification

RFC3448bis

draft-ietf-dccp-rfc3448bis-02.txt
S. Floyd, M. Handley, J. Padhye, and

J. Widmer
July 2007,

DCCP Working Group

Reported in previous IETFs:

• Changes from RFC 3448, in draft-ietf-dccp-
rfc3448bis-00.txt

• Changes in draft-ietf-dccp-rfc3448bis-01.txt
• Reported for me in March 2007:

– Changes in draft-ietf-dccp-rfc3448bis-02b.txt,
(never submitted).

– A slide on “things that could be done”.

Changes from
draft-ietf-dccp-rfc3448bis-01.txt:

• The initial feedback packet after an idle period.
– The mechanism for dealing with this has changed.

• Response to idle and data-limited periods.
– The sender is not limited by the receive rate if the

sender has been idle or data-limited for an entire
feedback interval.

• Use of unused send credits:
– The sender may keep unused sent credits up to one

RTT.
• Many clarifications and some small changes, listed

in the draft.

The initial feedback packet
after an idle period:

• The mechanism for dealing with this has changed.
• The new mechanism:

– Keep X_recv_set, with X_recv from the last two RTTs.
– If (the entire interval covered by the feedback packet was a

data-limited interval)
• Replace X_recv_set contents by Infinity;

• Older mechanisms in older revisions:
– If (not the first feedback packet, and not the first feedback

packet after a nofeedback timer)
– If (feedback packet reports Limited Receive Rate or sender

has been data-limited over period covered by the last
feedback packet)

Response to Idle and Data-Limited Periods:

 Protocol Long idle periods Long data-limited periods
 -------------- -------------------- ----------------------
Standard TCP: Window -> initial. No change in window.

TCP with CWV: Halve window Reduce window half way
 (not below initial cwnd). to used window.

 Standard TFRC: Halve rate Rate limited to
 (not below 1 pkt/64 sec). twice receive rate.
 One RTT after sending pkt,
 rate is limited by X_recv.

 Revised TFRC: Halve rate Rate not limited to
 (not below initial rate). twice receive rate.

Response to Idle Periods:

• The initial version of RFC3448bis:
– After a long idle period, the sender doesn’t

reduce the allowed rate below the initial rate.
– From RFC4342.

• This is still true.
– But the mechanisms have changed.

Response to Idle Periods:
• Current pseudocode:

– If (X_recv < recover_rate, and sender has been idle ever since
nofeedback timer was set)

• Don’t use X_recv to reduce sending rate.

• Initial versions of the draft (-00 and -01):
– The code for dealing with idle or data-limited periods

was in response to feedback packets, not in response to
the nofeedback timer.

– If (sender has been idle or data-limited)

• Later versions of the draft (-02c):
– The code for dealing with idle or data-limited periods

was moved to be in response to the nofeedback timer
(as it is now).

– If (X_recv < 4 packets per round-trip time, and sender has
been idle since nofeedback timer was set)

• Don’t use X_recv to reduce sending rate.

Response to Data-Limited Periods:

• This draft:
– Follow Standard TCP, and don’t be limited by receive

rate during data-limited periods.
– If (the entire interval covered by the feedback packet was a

data-limited interval) {
 Replace X_recv_set contents by Infinity;

• Earlier -00, -01, and -02c revisions:
– During idle or data-limited periods, do be limited by

receive rate, but not below the initial sending rate.
– If (sender has been idle or data-limited within last two round-

trip times)
 min_rate = max(2*X_recv, W_init/R);

Unused send credits:

• Specified that the sender may maintain unused
sent credits up to one RTT.
– This gives behavior similar to TCP.
– A TFRC implementation MAY limit bursts to

less than one RTT, if desired.

• This was not explicitly addressed in RFC 3448, or
in earlier revisions of this draft.

Basic Simulation Results - I
• Long idle period behaviour.
• Sending rate never reduces below recover_rate
• Low receiver rate after idle period and initial startup rectified.

Basic Simulation Results - II
•Long idle period behaviour.
•With loss, the sending rate is limited by the throughput
equation after the idle period.

• Datalimited behaviour
• Low receiver rate problem rectified.
• 3448-bis now good for bursty traffic : gives high perceived quality.

Basic Simulation Results - III

Change #1 to make:
• For reducing sending rate during idle periods

during initial slow-start.
• Old:
 Else if (X_recv < recover_rate, and

 sender has been idle ever since nofeedback timer was set)
 Timer_limit is not updated;

• New:
 Else if (((p>0 && X_recv < recover_rate) or

 (p==0 && X < 2 * recover_rate)), and
 sender has been idle ever since nofeedback timer was set)
 Timer_limit is not updated;

Problem reported by Arjuna. (Fix not yet tested.)

Change #2 to make:

• When datalimited and p = 0, the sender still doubles the
allowed sending rate after each feedback packet.

• Old code, for when (p==0):
 Else if (t_now - tld >= R) // initial slow-start
 X = max(min(2*X, recv_limit), initial_rate);
 tld = t_now;
• New code, for when (p==0):
 Else if (t_now - tld >= R) and
 (sender was not data-limited over entire feedback interval)
 // initial slow-start
 X = max(min(2*X, recv_limit), initial_rate);
 tld = t_now;
Problem reported by Arjuna. (Fix not yet tested.)

Future work
(in a separate document):

• “Future work could explore alternate
responses to using the receive rate during a
data-limited period.”
– E.g., more like TCP with Congestion Window

Validation.
• At a minimum, we could have more limits

on *increasing* the allowed sending rate
during a data-limited period.

