

## Performance Evaluation of CL-PHB Admission and Pre-emption Algorithms draft-zhang-pcn-performance-evaluation-01.pdf

#### Joy Zhang

joyzhang@cisco.com

Anna Charny

acharny@cisco.com

#### Francois Le Faucheur

flefauch@cisco.com

Vassilis Liatsos vliatsos@cisco.com

## Outline

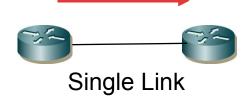
- Simulation results for the example admission control algorithm described in http://www.ietf.org/internet-drafts/draft-briscoe-tsvwg-cl-phb-0
- Flow Preemption simulation results for the example algorithm described in

http://www.ietf.org/internet-drafts/draft-briscoe-tsvwg-cl-phb-0

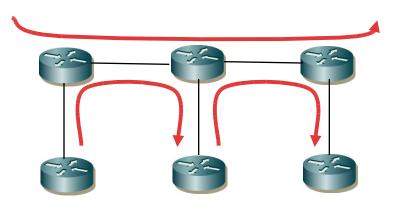
#### Note: Admission and Preemption were run independently

 Reasonable if admission and preemption thresholds are sufficiently apart (10-20%)

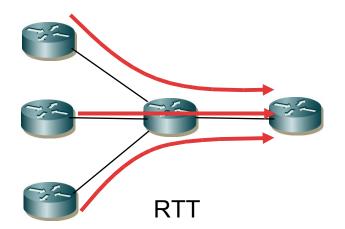
 Further work needed to simulate interaction between Admission and Preemption if threshold are closer together


# Simulation Environment (Traffic Model)

- CBR
  - average rate: 64Kbps
- On-Off Voice (VBR)
  - Voice w/silence suppression
  - average rate: 21.76Kbps
- Synthetic "Video" (SVD)
  - High Peak-to-Mean Ratio (4:1) on-off VBR Traffic
  - Average rate: 12Mbps
- Real Video Traces (VTR) new in this version of the draft
  - Frame size traces of MPEG-4 and H.263 encode video
  - Average rate: 769Kbps
  - http://www.tkn.tu-berlin.de/research/trace/trace.html
- Randomization of Base Traffic Models new in this version of the draft


 Randomly moving the packet by a small amount of time around its transmission time to simulate small queuing delays

# Simulation Environment (Topologies)


Single Bottleneck



Multiple Bottlenecks (new)



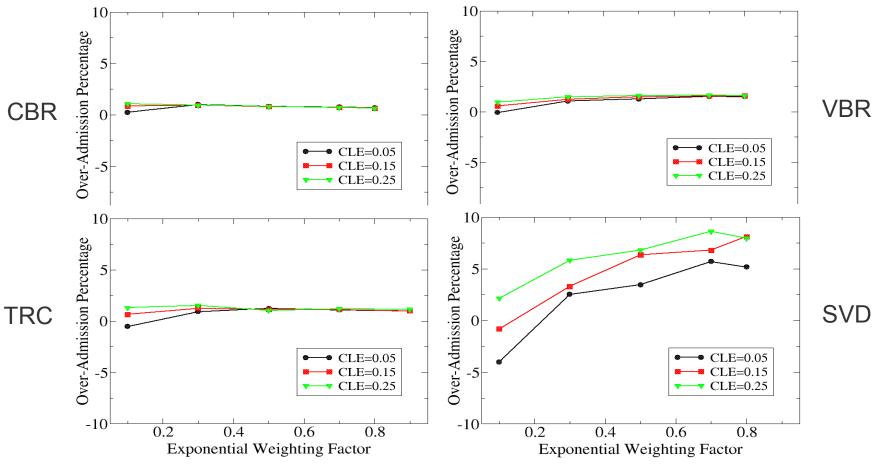
2-BN Parking Lot (PLT) (3 and 5 bottleneck PLT also simulated)



## **Admission Control Results**

- Sensitivity to call arrival assumption (Poisson vs. burstier Batch): works well for both on links 10M and up
- Sensitivity to marking thresholds

(Ramp vs step): no substantial difference in the simulated setup


Limited variation of upper/lower marking threshold: relatively insensitive, but more study needed

- Sensitivity to RTT: no effect in the one bottleneck/stable traffic case
- Sensitivity to EWMA weight and CLE: Relatively insensitive to parameter change
- Effect of Ingress-Egress Aggregation: no effect
- Effect of Multiple Bottlenecks: no effect

### Admission Control Results Sensitivity to EWMA weight and CLE

Relatively insensitive to parameter change

- More stressful for SVD, but within -3% to +10% over-admit



<sup>© 2005</sup> Cisco Systems, Inc. All rights reserved.

## Admission Control Results Effect of Ingress-Egress Aggregation

- Difference in Ingress-Egress aggregation appears to have no effect on the performance in the simulation we performed
  - requires further investigation

|                   | CBR   | VBR   | VTR   | SVD   |
|-------------------|-------|-------|-------|-------|
| SingleLink        | 1.905 | 1.948 | 1.539 | 8.62  |
| RTT (100 Ingress) | 1.956 | 2.199 | 1.868 | 11.26 |

over-admission-perc. on the bottleneck

#### Admission Control Results Effect of Multiple Bottlenecks

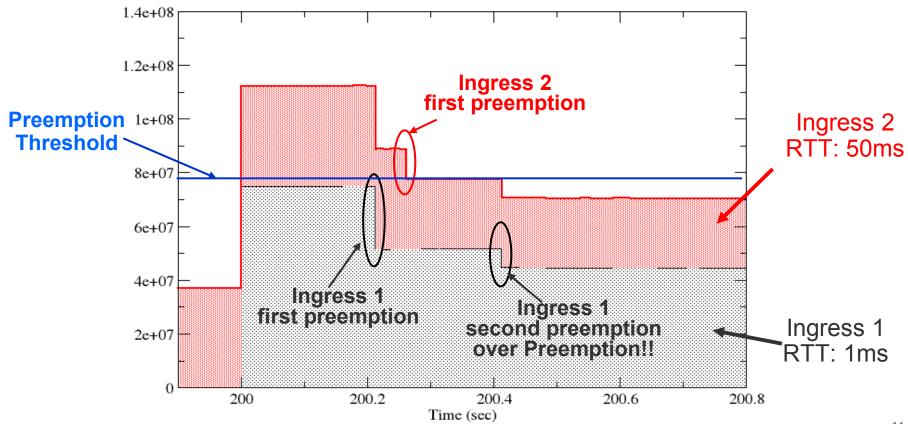
#### No visible multiple bottleneck effect

|            | CBR   | VBR   | VTR   | SVD   |
|------------|-------|-------|-------|-------|
| SingleLink | 1.905 | 1.948 | 1.539 | 8.62  |
| PLT (5BN)  | 1.149 | 1.501 | 1.117 | 4.737 |

over-admission-perc. on the bottleneck Note: In the case of PLT, the worst among the 5 BN is used

## Admission Control Results (Conclusion)

- Performance remains reasonable even for really low ingressegress aggregation levels
- The algorithm is relatively insensitive to variation of key parameter settings
- Synthetic video traffic SVD was the most challenging for all topologies, and the performance of real video traces (VTR) was substantially better
- No performance degradation is observed in a multi-bottleneck topology
- To summarize, so far all seem performing as advertised


## **Preemption Results**

- Sanity check on SingleLink topology: worked as expected
- Effect of RTT Difference: Visible effect with relative RTT difference, though not significant
- Effect of Ingress-Egress Aggregation: visible effect with low aggregation, though not as feared
- Effect of Multiple Bottlenecks: worked as expected

#### **Preemption Results: Effect of RTT Difference**

- Absolute value of RTT has no effect
- Relative difference in RTT causes limited over-preemption

- 6% - 10% in experiments we run



## Preemption Results: Effect of Ingress-Egress Aggregation


In theory, at low aggregation serious over-preemption may occur

 When ingress-egress aggregate has only one flow, all flows can get marked at the bottleneck and all get preempted

- As a rule, over-preemption does occur but much smaller than the worst case behavior
  - e.g. for randomized CBR
    - 0.53% over-preemption with sufficient aggregation
    - 13.19% over-preemption 1 Flow/Ingress
- In some simulations, it does not occur at all
  - Due to marking synchronization or specific traffic patterns
  - Can not be relied on in general
- Over-preemption for low aggregation can not be written off as a "corner case"

## **Preemption Control Results Effect of Multiple Bottlenecks**

- Ingress-Egress Aggregates that travel more bottlenecks will see "beat-down" effect (over-preemption), as theoretically expected
  - Long-haul flow gets excessively marked at subsequent bottlenecks
  - Upstream bottlenecks become underutilized
  - The absolute amount of "beat-down" depends on traffic matrix
- Actual simulation results are very close to the theoretically expected ones



|                       | CBR   | VBR   | VTR   | SVD   |  |  |
|-----------------------|-------|-------|-------|-------|--|--|
| Long-haul<br>Flow     | 13.56 | 16.30 | 14.77 | 23.31 |  |  |
| First<br>Bottleneck   | 9.61  | 11.59 | 11.06 | 18.13 |  |  |
| Last<br>Bottleneck    | 0.92  | 2.13  | 2.89  | 10.85 |  |  |
| over-preemption-perc. |       |       |       |       |  |  |

## Key directions for further evaluation

- further investigation on call arrival assumptions (burstier than Poisson)
- more sophisticated and/or realistic topology and traffic matrix
- Mix of traffic types on bottleneck
- Interaction between admission and preemption

# CISCO SYSTEMS