
RPC/RDMA Last Call Issues

Tom Talpey
NFSv4 Interim WG

Ann Arbor, MI
Sept 15, 2006

Drafts

• RDMA Transport for ONC RPC
– “RPC/RDMA”
– http://www.ietf.org/internet-drafts/draft-ietf-nfsv4-

rpcrdma-03.txt

• NFS Direct Data Placement
– “NFS DDP”
– http://www.ietf.org/internet-drafts/draft-ietf-nfsv4-

nfsdirect-03.txt

• NFS/RDMA Problem Statement
– http://www.ietf.org/internet-drafts/draft-ietf-nfsv4-nfs-

rdma-problem-statement-04.txt

Reported Issues

• NFS DDP and Problem Statement
– No issues

• RPC/RDMA
– rpcbind/netid, and/or port assignment
– Record marking vs RPC/RDMA framing
– XDR roundup overhead

rpcbind / well-known port

• Issue – iWARP in non-“step-up” mode
– Can’t share port 2049 between record marking (TCP)

and RPC/RDMA
– Affects NFSv2, NFSv3, NFSv4.0

• Non-issue – NFSv4.1/iWARP in “step-up”
– Connects in TCP, uses v4.1 session to negotiate

RDMA
– “steps up” to RDMA during Session exchange
– Reuses port 2049

• Non-issue – IB
– IB RDMA and IPoIB use different port spaces

Proposal in draft

1. Assign a new Netid to RDMA
– NFS server chooses port (any port)
– rpcbind advertises service on port
– Problem – NFSv4.0 doesn’t use rpcbind

2. Assign a new RDMA well-known port
– E.g. 2050

• Together, would support all versions

Comment received

• Assign a new netid and always use
rpcbind/portmap

• Issues
– Guidance on choice of port
– What about NFSv4.0?

• => We still need the port assignment
• Consensus?

Record Marking / RPC/RDMA

• No discussion of shifting from TCP record
marking to RPC/RDMA framing

• Actually out of scope for the RPC/RDMA draft,
and NFS DDP too
– These only document what happens in RDMA mode
– Only NFSv4.1 allows step-up

• => add text to NFSv4.1 RDMA discussion?

XDR Roundup (new issue)

• When bulk data is not multiple of 4 bytes,
XDR “rounds up” marshalled data

• Over TCP, this simply adds up to 3 bytes
to the XDR stream

• Over RDMA, this typically adds an extra
RDMA chunk, for up to 3 zeroed bytes
– Adds an RDMA Read operation to NFS writes
– Needless overhead

Solution(s)

• Defer RDMA processing until NFS decode
– NFS Read count <= XDR encoded?

• Roundup

– This is undesirable because it means changing
NFS to accommodate a transport

• Encode a “roundup” indicator in
RPC/RDMA read chunks
– Easily done in client XDR marshalling
– Easily processed in server XDR unmarshalling

Assuming you agree…

• How to encode the “roundup”?
– Need to include a roundup flag
– Chunk would still point at valid, rounded-up

data

Rev the RPC/RDMA protocol?

• Add a boolean flag word to the
rpcrdma_read_chunk

– Define RPC/RDMA protocol version 2
– Or just change version 1
– 5 (known) existing implementations to

change

A: Overload the XDR discrim?

• The rpcrdma_read_chunk is encoded as
an array:
– xdr_discrim (1 or 0) [4 bytes]
– Handle [4 bytes]
– Length [4 bytes]
– Offset (address) [8 bytes]
– Position (xdr offset) [4 bytes]

• Define xdr_discrim==2 as padding?

2 Handle length[1, 2 or 3] offset… position

B: Revise the chunk definition

• Add field to rpcrdma_read_chunk:
– xdr_discrim (1 or 0) [4 bytes]
– Handle [4 bytes]
– Length [4 bytes]
– Offset (address) [8 bytes]
– Position (xdr offset) [4 bytes]
– Flags (4 bytes)

• Define padding flag
• Revise to version 2

1 Handle length[1, 2 or 3] offset… position flag

I prefer “A”

• Overload the xdr_discrim
– This is framing, not formal XDR
– All existing implementations compatible
– Lightweight, transparent
– Flexible – can declare “middle” chunks as

padding (zero) too.

• But, “B” is more formal
• Opinions? (take to list after)

Backup

Chunking

NFS Write transfer
Client

NFS-RDMA
Server

NFS-RDMA
nfsdClient

NFS-RDMA

RPC Msg
RDMA Send

[RDMA Hdr+Rd Ch+RPC Hdr]

RPC Message

RPC Reply

RDMA Read

[RKEY/TO from Rd Ch]

RPC Reply

RDMA Read Reply[RPC Data to XDR Byte Stream]

RDMA Send

[RDMA Hdr + RPC Reply]

Too much information?

iov_base

iov_len
iov_len

page_base
page_len

pages[1]

RPC
HDR

pages[0]

xdr_buf RDMA_SEND

iov_lenSGE[0]
addr

phys_mr.lkey

length

WR[1]

 0.5

iov_lenSGE[0]
addr

phys_mr.lkey
length

 0.4

iov_lenSGE[1]
addr

phys_mr.lkey
length

 0.4

wr_id

 RDMA_READ
wr_id

WR[0]

Page0
Page1

RDMA
Context

xprt
rqstp

Page 0

RDMA
Context

xprt
rqstp

