
09/22/2006 10:41 AMfields_combined.html

Page 1 of 6file:///Users/shepler/sun_home/2006nfsv4interim/fields_combined.html

NFSv4 ACLs and mode bits
Traditionally clients have used either mode bits or Windows ACLs, rarely (if ever) both.

This limits the kind of mode-bit/NFSv4 ACL interactions seen so far.

NFSv4 (hopefully!) will change this.

The goal is to move to a common permissions model based on Windows/NFSv4 ACLs.

How do we migrate unix systems to NFSv4 ACLs?

What sort of problems are we likely to encounter as we do so?

Widespread integration of Windows ACLs into unix filesystems and interfaces may present new problems
not as common in previous multi-protocol situations.

Past experience with Windows ACL/mode bit sharing may not be enough.

How do applications use modes?

Do applications use modes?
Yes!

chmod calls on fieldses.org, a Debian (Sid) server/desktop/entertainment center.....

 296077 faubackup-scatter
 832 chmod
 494 udevd
 148 dpkg
 98 sshd
 38 pine
 33 totem
 17 xmame
 17 vi
 12 dpkg-preconfigure
 11 unison
 10 ld
 6 gdm
 6 xine
 5 unison
 3 dbus-daemon
 3 postmaster
 3 screen
 3 syslogd
 3 Xorg
 2 firefox-bin
 2 objcopy

09/22/2006 10:41 AMfields_combined.html

Page 2 of 6file:///Users/shepler/sun_home/2006nfsv4interim/fields_combined.html

 1 d
 1 install
 1 postmaster
 1 vim

What do they expect from mode bits?

How do applications use mode bits?
What does the standard say?

All you need to know is:

After a chmod, permissions must be bounded above by the given mode.

This condition is very easily met:

 ALLOW OWNER@ rwx
 ALLOW u:andros rwx
 ALLOW u:bfields rwx
 ALLOW g:users rwx
 ALLOW GROUP@ rwx
 ALLOW EVERYONE@ rwx

 chmod 644

 ALLOW OWNER@ rw-
 ALLOW GROUP@ r--
 ALLOW EVERYONE@ r--

But POSIX allows preserving more, if you want:

 ALLOW OWNER@ rwx
 ALLOW u:andros rwx
 ALLOW u:bfields rwx
 ALLOW g:users rwx
 ALLOW GROUP@ rwx
 ALLOW EVERYONE@ rwx

 chmod 644

 ALLOW OWNER@ rw-
 ALLOW u:andros r--
 ALLOW u:bfields r--
 ALLOW g:users r--
 ALLOW GROUP@ r--
 ALLOW EVERYONE@ r--

Should you do more?

Inherited ACLs and open()

09/22/2006 10:41 AMfields_combined.html

Page 3 of 6file:///Users/shepler/sun_home/2006nfsv4interim/fields_combined.html

If you implement chmod by replacing the NFSv4 ACL, and you use the same algorithm on inheritance, then
unix clients will never inherit ACLs.

Inherited ACLs represent policy that should be overridden only when explicitly requested.

Can we handle inheritance as a special case?

Based on observed chmod use by applications,

 open("somefile", O_RDWR|O_CREAT, mode1)
 ... write some stuff, etc ...
 chmod("somefile", mode2)

is extremely common.

Without ACLs, final permissions are the same as they would have been if we created the file with mode2.

With ACLs, they may be completely different.

Should we do more?

Masking
Without masking:

 ALLOW OWNER@ rwx
 ALLOW u:andros rwx
 ALLOW u:bfields rwx
 ALLOW g:users rwx
 ALLOW GROUP@ rwx
 ALLOW EVERYONE@ rwx

 chmod 0

 ALLOW EVERYONE@ ---

 chmod 644

 ALLOW OWNER@ rw-
 ALLOW GROUP@ r--
 ALLOW EVERYONE@ r--

With masking:

 ALLOW OWNER@ rwx
 ALLOW u:andros rwx
 ALLOW u:bfields rwx
 ALLOW g:users rwx
 ALLOW GROUP@ rwx
 ALLOW EVERYONE@ rwx

 chmod 0

 ALLOW EVERYONE@ ---

09/22/2006 10:41 AMfields_combined.html

Page 4 of 6file:///Users/shepler/sun_home/2006nfsv4interim/fields_combined.html

 ALLOW EVERYONE@ ---

 chmod 644

 ALLOW OWNER@ rw-
 ALLOW u:andros r--
 ALLOW u:bfields r--
 ALLOW g:users r--
 ALLOW GROUP@ r--
 ALLOW EVERYONE@ r--

How do you store the extra information?

Masking
Explicit mask in the ACL:

 ALLOW OWNER@ rwx
 ALLOW u:andros rwx
 ALLOW u:bfields rwx
 ALLOW g:users rwx
 ALLOW GROUP@ rwx
 ALLOW EVERYONE@ rwx

 chmod 0

 DENY OWNER@ rwx
 ALLOW OWNER@ rwx
 DENY u:andros rwx
 ALLOW u:andros rwx
 DENY u:bfields rwx
 ALLOW u:bfields rwx
 DENY g:users rwx
 ALLOW g:users rwx
 DENY GROUP@ rwx
 ALLOW GROUP@ rwx
 DENY EVERYONE@ rwx
 ALLOW EVERYONE@ rwx

 chmod 644

 ALLOW OWNER@ rw-
 ALLOW u:andros r--
 ALLOW u:bfields r--
 ALLOW g:users r--
 ALLOW GROUP@ r--
 ALLOW EVERYONE@ r--

Storing the mask separately on the server:

 ALLOW OWNER@ rwx
 ALLOW u:andros rwx
 ALLOW u:bfields rwx
 ALLOW g:users rwx

09/22/2006 10:41 AMfields_combined.html

Page 5 of 6file:///Users/shepler/sun_home/2006nfsv4interim/fields_combined.html

 ALLOW GROUP@ rwx
 ALLOW EVERYONE@ rwx

 chmod 0

 ALLOW EVERYONE@ ---

 chmod 644

 ALLOW OWNER@ rw-
 ALLOW u:andros r--
 ALLOW u:bfields r--
 ALLOW g:users r--
 ALLOW GROUP@ r--
 ALLOW EVERYONE@ r--

Advantages:

ACLs returned are as simple as in the case where there is no masking.
We still handle the only case we care about:

 open(...,mode1)
 chmod(...,mode2)
 chmod(...,mode3)
 ...

(We don't handle this case:

 open(...,mode1)
 chmod(...,mode2)
 get acl
 set acl
 chmod(...,mode3)

But that's not a case we care about.)

Disadvantage:

Operation is opaque to client

Mask attribute?

Masking
Client's view with and without mask attribute:

 ALLOW OWNER@ rwx
 ALLOW u:andros rwx
 ALLOW u:bfields rwx
 ALLOW g:users rwx
 ALLOW GROUP@ rwx
 ALLOW EVERYONE@ rwx

 chmod 0

09/22/2006 10:41 AMfields_combined.html

Page 6 of 6file:///Users/shepler/sun_home/2006nfsv4interim/fields_combined.html

 chmod 0

 Client that requests acl only: Client that requests acl and mask:

 ACL: ACL: mask:

 ALLOW EVERYONE@ --- ALLOW OWNER@ rwx 000
 ALLOW u:andros rwx
 ALLOW u:bfields rwx
 ALLOW g:users rwx
 ALLOW GROUP@ rwx
 ALLOW EVERYONE@ rwx

 chmod 644

 ALLOW OWNER@ rw-
 ALLOW u:andros r--
 ALLOW u:bfields r--
 ALLOW g:users r--
 ALLOW GROUP@ r--
 ALLOW EVERYONE@ r--

Advantages:

Operation of mask is no longer opaque to client
Allows complete save and restore of permissions over NFSv4.
Direct manipulation of mask may be useful in some cases.

Disadvantages:

None. It's optional. Feel free to pretend it doesn't exist.

