Datagram Transport Layer Security
(DTLS) Extension to Establish Keys
for Secure Real-time Transport
Protocol (SRTP)

(Phew!)

Eric Rescorla
David McGrew




Overview

e SDP signals “I'm willing to do DTLS"” (and here’'s my fingerprint)

e Do DTLS key exchange in media channel

— Allows reuse of existing DTLS authentication /key
establishment mechanisms

— Use extensions to negotiate SRTP protection profiles

e Use DTLS master secret to generate SRTP traffic keys

Eric Rescorla IETF 67



TLS Handshake Extension

uint8 SRTPProtectionProfilel[2];

struct {
SRTPProtectionProfiles SRTPProtectionProfiles;
uint8 srtp_mki<255>;

} UseSRTPData;

SRTPProtectionProfile SRTPProtectionProfiles<2716-1>;

SRTPProtectionProfile SRTP_AES128_CM_SHA1_80 = {0x00, 0x01};
SRTPProtectionProfile SRTP_AES128_CM_SHA1_32 = {0x00, 0x02};
SRTPProtectionProfile SRTP_AES256_CM_SHA1_80 = {0x00, 0x03};
SRTPProtectionProfile SRTP_AES256_CM_SHA1_32 = {0x00, 0x04};
SRTPProtectionProfile SRTP_NULL_SHA1_80 {0x00, 0x05};
SRTPProtectionProfile SRTP_NULL_SHA1_32 {0x00, 0x06};

Eric Rescorla IETF 67



Message Flow

Alice Atlanta Biloxi Bob
Offer Offer Offer
> > - SIP
fingerprint=XXX fingerprint=XXX fingerprint=XXX
ClientHello )
-
use_srtp=SRTP_AES128_CM_SHA1_80, SRTP_AES128_CM_SHA1_32, ...
ServerHello use_srtp=SRTP_AES128_CM_SHA1_80
|
Certificate, CertificateRequest, ServerHelloDone
) ' . _ DTLS
Certificate, ClientKeyExchange, Certificate Verify
-
ChangeCipherSpecs, Finished
ChangeCipherSpecs, Finished
e
/
SRTP Early
- |
Media
Answer Answer Answer
- - - SIP
fingerprint=YYY fingerprint=YYY fingerprint=YYY
SRTP Normal
- >
Media
Eric Rescorla IETF 67 4



Transporting DTLS Handshake Traffic

e Current draft:
— Carried over same channel as media
— Directly over UDP
— Demuxable from RTP/STUN by first byte (S 3.6.2)

— One DTLS connection per media stream

e Other alternatives
— In RTCP channel
— Header extension (a la ZRTP)

Eric Rescorla IETF 67



Requirements Evaluation

R1: Forking and retargeting MUST work with all end-points being SRTP.

R2: Forking and retargeting MUST allow establishing SRTP or RTP with a mixture of SRTP- and
RTP-capable targets.

R3: With forking, only the entity to which the call is finally established, MUST get hold of the
media encryption keys.

R5: A solution SHOULD avoid clipping media before SDP answer without additional signalling.
R6: A solution MUST provide protection against passive attacks.
R7: A solution MUST be able to support Perfect Forward Secrecy.

R8: A solution MUST support algorithm negotiation without incurring per-algorithm computational
expense.

R9: A solution MUST support multiple cipher suites without additional computational expense
R10: Endpoint identification when forking. The Offerer must be able to associate answer with the
appropriate flow endpoint. In case of forking one might not want to perform a DH with every party
but instead to associate the SDP response with the right end point. This is a performance related
requirement.

R11: A solution MUST NOT require 3rd-party certs. If two parties share an auth infrastructure
they should be able to use it.

Yes
Yes

Yes (separate key exchange to
each peer)

Yes
Yes (including malicious proxies)
Yes (DHE modes)

Yes (cipher suites negotiated
first)

Yes
Yes (but latency tradeoff)

Yes (fingerprints but 3rd-party
certs are usable)

Eric Rescorla

IETF 67



Current status

e Bunch of drafts

— draft-mcgrew-tls-srtp-00, draft-fischl-sipping-media-dtls-00,
draft-fischl-mmusic-sdp-dtls-00

— Looking for feedback
e Prototype implementations in OpenSSL and EyeBeam (thanks

Derek MacDonald, Dragos Liciu, Jason Fischl, Nagendra
Modadugu)

Eric Rescorla IETF 67



Open issue: transporting key management messages

e An issue for any media-plane key management protocol

e RTCP channel
— Natural fit for RTP style
— But deployment of RTCP is spotty

e RTP header extension
— No dependency on RTCP

— Not what header extension intended for

e Carried directly over UDP—demuxed like STUN

— Keeps key management out of media packets

— Is this a good fit for the RTP style?

Eric Rescorla IETF 67



