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Key Aspects of the Proposed Architecture

λ Two Layers
λ SIP layer – call processing

λ P2P overlay layer – location service

λ P2P Overlay Layer
λ Super Node, Ordinary Node

λ Authentication Server

λ Bootstrap Server

λ Inter-domain call routing via Proxy
λ RFC3263
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Two Layer Approach

λ P2P overlay layer provides the following functions
λ P2P overlay management function - peer initiation (join), leave
λ P2P service function – placement and lookup of resources

λ SIP is just an application over P2P overlay layer.
λ DHT lookup messages are generic ---- independent of

SIP call semantics or resource types
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Why Two Layer Approach?

λ It is the model of RFC3263
λ Location service is separate from call establishment procedures.

λ Transparent interoperation with client server SIP
λ No change in SIP messages

λ Clarity
λ No confusion with semantics of existing SIP messages

λ Flexibility
λ Easier to support different overlay algorithms with little change in SIP messages

λ Sharing the overlay network --- common lookup mechanism for many things!
λ No change in DHT operation required to support advanced features of SIP-

based P2P VoIP, IM, and Presence

λ Can share the same overlay network with more applications beyond basic VoIP
call or IM.

λ For example, for P2P-based conferencing later.

λ Nodes without SIP entity can participate in the overlay network.
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Hierarchical Structure of P2P Overlay

λ Super Node (SN): Participate in lookup routing; reachable
through predefined ports and protocols by any node (most likely
to have a public IP address).

λ Ordinary Node (ON): Not involve in lookup routing, associate with
SNs and send service requests to them.

λ ON-SN hierarchy is independent of SIP UA-Proxy hierarchy.
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λ Bootstrap Server:
provides information
of some of existing
SNs to a new node.

λ Authentication Server:
authenticates user
identity (password-
based) and issues a
certificate for user
public key.

λ Why Hierarchy? Peers may be
heterogeneous.
λ A P2P overlay network may have only SNs.



6

Federation of P2P SIP Networks

λ Multiple independent overlay networks are allowed.
λ SIP domain <=> namespace
λ Single domain per overlay: A P2P overlay network supporting only one domain.
λ No lookup or placement across overlay network boundaries.
λ Call routing to a peer in a remote domain --- via P2P Proxies

λ Caller: alice@example.com, Callee: bob@example.net
λ The call goes through proxy of example.com and then the proxy of example.net.
λ Alice UA finds the example.com proxy via the overlay lookup.
λ The example.com proxy locates the example.net proxy via DNS.
λ The example.net proxy locates Bob UA via the overlay lookup.
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………
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Possible P2P SIP Network Composition Scenarios

Replace the location database accessed by local proxies
and the local registrar

P2PP2PCS(b)

Replace the registrar and DNS lookup for locations of
local proxies
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What Needs To Be Specified ?

λ P2P overlay protocol
λ P2P Overlay Algorithm
λ Message syntax and state machines
λ ON <-> SN, SN <-> SN
λ ON/SN <-> Authentication Server
λ ON/SN <-> Bootstrap Server

λ SIP entity behavior
λ P2P-UA Behavior
λ P2P-Proxy Behavior
λ P2P-Registrar Behavior

λ Interface between SIP layer and P2P overlay layer
λ Resource records (types, formats)

λ User location, STUN/TURN server location, …
λ P2P Overlay API (semantics)
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Security Considerations

λ Bootstrapping Security
λ Mutual authentication is required.

λ ON-SN Authentication
λ Minimize reliance on the central login server.

λ Peer Transport Security
λ Message authentication is required.

λ Firewalls
λ Allow port 80, 443 as the last resort ???

λ Relay for NAT Traversal
λ Defend against compromised relays by end-to-end authentication

λ Registration
λ Signature for the location records
λ Privacy issue

λ Authentication when central servers are not reachable
λ DoS attacks

λ Defend excessive overlay traffic generation by rate limiting
λ Ill behaviors of SNs

λ Messing up DHT tables
λ Free riders

λ Refusing or avoiding to be a SN
λ And so on ….
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Peer Initiation

λ Any peer starts as an ordinary node (ON).
1. Bootstrap – discovering peers in the overlay

λ Service location (multicast)
λ Cached addresses
λ Last good addresses
λ Preconfigured bootstrap server

2. ON-SN Association
λ Contacting SN – UDP, TCP, Fallback Transport
λ Mutual return reachability test

3. Authentication
λ If ON does not have a certificate, contact the login server and

receives the certificate.
λ ON-SN mutual authentication

4. NAT/FW Traversal
λ Create address bindings for inbound SIP messages
λ ICE (STUN, TURN)
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Post Initiation Tasks

λ Registration
λ Publish contacts (tuples of transport protocol, IP

address, port) in the overlay

λ Becoming a Super Node
λ Self-selected dynamically and automatically.

λ MUST be able to receive overlay messages from
other SNs on predetermined protocols and ports.

λ SHOULD be online stably.

λ SHOULD have sufficient physical resources.
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P2P Overlay API

λ get(in overlay_id, in name, out records, out
error)

λ add(in overlay_id, in name, in record, in
lifetime, in option, out error)

λ update(in overlay_id, in name, in record, in
lifetime, in option, out error)

λ remove(in overlay_id, in name, out error)
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Resource Record – User Location

<resource>                                                         ------ header of a resource
<version>1.0</version>                                     ------ resource format version
<type>user location</type>                               ------ type of the resource
<key>19873761ab24</key>                              ------ key for the resource
<lifetime> 3600 </lifetime>                                ------ lifetime of the record
<timestamp>19809832142</timestamp>          ------ indicate which is more recent
<user_URI> user@example.com </user_URI>
<location>
   <node_IP>178.14.234.21</node_IP>                --- the IP address at which the user can be

reached
   <transport>TCP5060 UDP5060 TCP80 TCP443</transport>   --- the list of ports the UA is

listening to
</location>
<location>
   <node_IP>192.168.0.100</node_IP>                --- the IP address at which the user can be

reached
   <transport>TCP5060 UDP5060 TCP80 TCP443</transport>   --- the list of ports the UA is

listening to
</location>
</resource>

λ Resource name: <type> + <user_URI>
λ Resource key = hash(resource name)
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Resource Record – Proxy Location

<resource>                                                         ------ header of a resource
<version>1.0</version>                                     ------ resource format version
<type>proxy location</type>                              ------ type of the resource
<key>19873761ab24</key>                              ------ key for the resource
<lifetime> 36000 </lifetime>                                ------ lifetime of the record
<timestamp>198023422</timestamp>               ------ indicate which is more recent
<domain> example.com </domain>
<location>
   <node_IP>178.14.234.21</node_IP>                --- the IP address at which the user can be

reached
   <transport>TCP5060 UDP5060 TCP80 TCP443</transport>   --- the list of ports the proxy is

listening to
</location>
<location>
   <node_IP>192.168.0.100</node_IP>                --- the IP address at which the user can be

reached
   <transport>TCP5060 UDP5060 TCP80 TCP443</transport>   --- the list of ports the proxy is

listening to
</location>
</resource>

λ Resource name: <type> + <domain>
λ Resource key = hash(resource name)
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