Requirements for SIP-based Peer-to-Peer Internet Telephony draft-baset-sipping-p2preq-00

Salman Baset Henning Schulzrinne Eunsoo Shim K. Dhara

Overview

- P2P aka overlay network
- file sharing, VoIP, presence, instant messaging, content distribution, and collaboration
- resources of participants shared to provide services

- computation, bandwidth, storage

may use some limited centralized resources

Potential P2P Characteristics

- good scalability
 - self-scaling: resources increase with user population
- reduced management costs
 - "servers" are user-managed
- reduced deployment costs

low up-front investment

easy setup

- not exclusive to P2P

Terminology

- - incremental forwarding of queries to something closer to authoritative source of mapping
 - may be separate from actual computational or storage resource
 - could point to resource elsewhere
- Overlay network: collection of DHTs and their internal pointers (= query paths)
 - can be clients
 - subset of clients ("super nodes")
 - special nodes operated by service provider

Basic goal

- MUST support basic voice, video, interactive text
- SHOULD support asynchronous messaging and presence

Resources to distribute

- Location service, NAT and firewall traversal servers, voicemail, address book, and configuration storage
- If possible, generic mechanism () add more services later
- Note: SIP is already close to P2P
 - proxy servers not mandatory
 - proxy servers can be distributed
 - but lookup via DNS limits flexibility (domain only)

Protocol reuse

 Existing protocols such as SSL, TLS, and SIP SHOULD be reused as much as possible such that their usage does not introduce a significant overhead.

Not just one DHT

- accommodate different DHT algorithms:
 - Chord, CAN, Kademlia, Pastry, ...
 - still active research area
 - trade-off look-up costs vs. churn resilience
 - small vs. large scale
- client may be able to ignore DHT if external

NAT traversal

- The peer-to-peer system SHOULD distribute the functionality of NAT and firewall traversal servers to the end-points.
- A peer with NAT and firewall traversal capabilities SHOULD be selected such that it does not introduce significant delay between the communicating peers.

Voice transport

- The peers SHOULD support sending and receiving voice packets over TCP in addition to UDP.
 - Probably not really a P2P requirement.

Deployment scale

 The P2P system will be deployed in small offices and home networks (SOHO), emergency and ad-hoc situations, and globally over the Internet. The protocols SHOULD be flexible to cater for the varying scale requirements of these networks.

Architectural requirements

- SHOULD achieve Internet scale.
- MUST continue to function as peers arrive, depart, and fail. No assumptions on peer uptime or capabilities

- may affect selection of DHT, however

Naming

- The system SHOULD allow centralized and non-centralized naming authorities.
 - support first-user-keeps naming
 - global naming may not be necessary in small, isolated overlays
 - may be able to qualify with p2p name

Services/resource lookup

- Some services may be centralized provide discovery
 - e.g., voicemail storage
- Interconnect with PSTN, non-P2P SIP, other P2P systems

Security issues

- Inherently different requirements and trust model
 - trust may be probabilistic
 similar to byzantine failure models
 - well-known results: 2/3 better be good
 - need to protect against "mole invasion"
 - but attacker may not be able to choose attacked node
 - different motivations of "evil nodes":
 - leachers: don't want to contribute resources
 - curiosity: steal information (but may only get random node)
 - DOS: prevent communications
- Identity
 - avoid identity theft (> typically, FCFS)
 - sybil attacks (impersonation)

Security issues: signaling and media

- Media and signaling need to be encrypted end-to-end
 - discourage nosy peers
 - key exchange is hard problem (MIM)

Open issues

- Distinguish requirements for three models:
 - small-scale (zero-conf & "broadcast")
 - built-in DHT
 - generic (external) DHT
- Characterizing security issues
 - traditional "provider is trusted" not always applicable