TLS Working Group Document Status

Eric Rescorla

Published RFCs

- The TLS Protocol Version 1.0 (RFC 2246)
- Addition of Kerberos Cipher Suites to Transport Layer Security (TLS) (RFC 2712)
- Upgrading to TLS Within HTTP/1.1 (RFC 2817)
- HTTP Over TLS (RFC 2818)
- AES Ciphersuites for TLS (RFC 3268)
- Transport Layer Security (TLS) Extensions (RFC 3546)
- Transport Layer Security Protocol Compression Methods (RFC 3749)
- Addition of Camellia Cipher Suites to Transport Layer Security (TLS) (RFC 4132)

In RFC-Ed Queue

- The TLS Protocol Version 1.1 (draft-ietf-tls-rfc2246-bis-13)
- Pre-Shared Key Ciphersuites for Transport Layer Security (TLS) (draft-ietf-tls-psk-09)
- Transport Layer Security (TLS) Extensions (draft-ietf-tls-rfc3546bis-02)

Last Call Requested

• ECC Cipher Suites for TLS (draft-ietf-tls-ecc-12.txt)

Hash Functions, MACs, and PRFs, oh my!

Eric Rescorla

Background: the status of SHA-1 and MD5

- Demonstrated collisions in MD5
 - With desktop-level computing power
- Theoretical collisions in SHA-1
 - Current work factor $2^{6}4$
- TLS still fairly safe
 - Collisions not really controllable
 - We depend mostly on preimages anyway
 - No reason to believe this extends to an attack on HMAC
- But it's still time to think about transition

Uses of Hash Functions in TLS

- Individually and negotiable
 - Certificates
 - Per-record MAC
- MD5 and SHA-1 hardwired
 - Digitally-signed element (for ServerKeyExchange and CertificateVerify)
 - KDF
 - Finished message

Certificate Selection

- Problem: I have certs signed with different algorithms
 - Need to somehow select one
- General principle: this is somehow negotiable.
 - As a side effect of cipher-suite?
 - Separately negotiated

Digitally-signed

- RSA
 - Sign a concatenated MD5/SHA of handshake messages
- DSA/ECC
 - Sign a SHA-1 hash
- Idea: replace with a single hash function
 - Again, how to negotiate this?

KDF

- HMAC-based PRF construction
 - XOR SHA-1 and MD5 values
- Idea: switch to a negotiated single hash function
 - Retain basic PRF structure

Finished Message

- Uses the same PRF as for the KDF
 - Current structure: $PRF(H(Handshake_messages))$
 - This avoids the need to buffer (key is first imput to PRF)
 - Do we retain this structure?
- Additional problem: the Finished messages provide downgrade protection
 - Only as strong as weakest common hash function
 - We're now in the business of approving/disapproving algorithms
 - * Hard to get around this
 - * Reminder: it's mostly preimages we care about

Other things people have asked for

- Non-HMAC-based integrity check modes (GOST)
- Longer nonce values (Housley)

What next?

- These changes would imply a TLS 1.2
- ... which means a charter change
- Is this something the TLS WG wants to do?