RADIUS Capabilities

A short presentation (with math)

> Alan DeKok Infoblox, Inc.

IETF 64

Goals

- Establish a common set of requirements for capabilities.
- Establish a common set of terminology for capabilities.
- Focus on requirements, independent of representation and implementation.

End up with requirements that can be manipulated symbolically.

Requirements for RADIUS

- Capabilities are advertised in packets.
- No existing clients or servers send capabilities in a packet.
- Capability aware systems must be interoperable with existing systems.
- Capabilities may traverse capability-unaware intermediaries.
- Multi-round capability negotiation is itself a capability that can be negotiated.

Base Assumptions

- Client and server each have a set of individual capabilities: C = { c_i }
- Goal is to agree on the *intersection* of capabilities: $C_{\text{Interoperable}} = C_{\text{Client}} \cap C_{\text{Server}}$
- Capabilities are further divided into mandatory and supported sets *M* and *S*:

•
$$M_{I} = M_{C} \cap M_{S}$$

•
$$S_{I} = S_{C} \cap S_{S}$$

Compatibility Requirements

- Both client and server have $C \supseteq \{ c_{RADIUS} \}$
 - i.e. capabilities include at least normal RADIUS.
- If no capabilities are in a packet, capabilityaware systems must use

$$M = S = \{ C_{RADIUS} \}$$

 This lets newer systems use the same capability algorithms for all conversations.

Proposal for Negotiation

- Negotiation is one round of advertising.
 - Client sends M_c and S_c to server.
 - Server has it's own M_s and S_s .
 - Server decides on M_{i} and S_{i} .
 - If $M_{i} \neq M_{s}$, the server rejects the request.
 - Otherwise, it sends M_{i} and S_{i} to client.
- Further exchanges (if any) are based on mutually agreed upon capabilities.

Additional Requirements

- Mandatory is subset of supported
 - M⊆S
 - This makes later analysis easier.
- Supported is subset of full capabilities
 - S⊆C
 - i.e. not all capabilities have to be advertised
- If $M = S = \{ c_{RADIUS} \}$, that information does not have to be advertised in a packet.

Summary

- The requirements presented here try to satisfy all parties.
- Mathematical approach helps to minimize communication issues.
- Mathematical approach helps to simplify analysis, using standard tools (sets, intersection, etc).
- Mathematical approach may help to ensure correctness of design and implementation.

Recommendations

- Establish WG opinion on assumptions and approach presented here.
- Work out differences with Emile's presentation.
- Continue with mathematical approach.
- Derive additional relationships.

Additional notes

- Capabilities must be tied to a client-server relationship
 - Client -> Proxy -> Server
 - Server says:
 - Who sent the capability? Client or Proxy?
 - Client says:
 - Who ACK'd the capability? Proxy or server?
- Client must advertise more than {c_{RADIUS}}, otherwise it is indistinguishable from existing implementations.

